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 Bone marrow is a target organ site involved in multiple diseases 

including myeloproliferative disorders and hematologic malignancies and 

metastases from breast and prostate. Most of these diseases are characterized 

with poor quality of life, and the treatment options are not very specific due to 

lack of delivery mechanisms which results in dose limitation to protect the 

healthy hematopoietic cells. Therefore, there is a critical need to develop 

effective therapeutic strategies that allow for selective delivery of therapeutic 

payload to the bone marrow. Nanotechnology-based drug delivery systems 

provide the opportunity to deliver drugs to the target tissue while decreasing 

exposure to normal tissues. E-selectin is constitutively expressed on the bone 

marrow vasculature, but almost absent in normal vessels, and therefore, E-

selectin targeted drug delivery presents an ideal strategy for the delivery of 

therapeutic nanoparticles to the bone marrow.  

 The objective of this study was to develop a novel bone marrow targeted 

multistage vector (MSV) via E-selectin for delivery of therapeutics and imaging 

agents. To achieve this goal, Firstly, an E-selectin thioaptamer (ESTA) ligand 

was identified through a two-step screening from a combinatorial thioaptamer 

library. Next, ESTA-conjugated MSV (ESTA-MSV) were developed and 

evaluated for their stability and binding to E-selectin expressing endothelial cells. 
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Different types of nanoparticles including liposomes, quantum dots, and iron 

oxide nanoparticles were loaded into the porous structure of ESTA-MSV. In vivo 

targeting experiments demonstrated 8-fold higher accumulation of ESTA-MSV in 

the mouse bone marrow as compared to non-targeted MSV Furthermore, 

intravenous injection of liposomes loaded ESTA-MSV resulted in a significantly 

higher accumulation of liposome in the bone marrow space as compared to 

injection of non-targeted MSV or liposomes alone. Overall this study provides 

first evidence that E-selectin targeted multistage vector preferentially targets to 

bone marrow vasculature and delivers larger amounts of nanoparticles. This 

delivery strategy holds potential for the selective delivery of large amounts of 

therapeutic payload to the vascular niches in the bone marrow for the treatment 

of bone marrow associated diseases. 
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Chapter 1. Introduction 

1.1 Bone marrow  

1.1.1 Composition, function and structure 

 The bone marrow (BM) is a loose connective tissue within the central 

cavities of the bones of the body. BM is a richly cellular and a highly vascular 

organ and one of the largest organs in the body. BM is the major hematopoietic 

organ and a primary lymphoid tissue that is responsible for the production of 

hematopoietic cells. The cellular composition of BM consists of  

1. Precursor and mature blood cells 

• Hematopoietic stem cells and precursor blood cells 

• Blood cells - erythrocytes, leukocytes, granulocytes, lymphocytes 

and platelets 

2. Stromal cells 

• Osteoclasts 

• Osteoblasts 

• Endothelial cells 

• Fibroblasts 

• Adipocytes 

• Macrophages 

 The cellularity and vascularity of BM can change rapidly in response to 

various physiological and pathological stimuli. In addition to its prime 

hematopoietic activity, bone marrow has distinct phagocytic and endocytic 

function due to the presence of macrophages and endothelial cells delineating its 
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sinuses, respectively. However, deeper understanding of the anatomical and 

physiological characteristics of the bone marrow is a prerequisite for achieving 

efficient delivery of therapeutics to the bone marrow. 

 

1.1.2 Anatomical properties of the bone marrow  

 The foremost characteristic of bone marrow organization is its vascular 

arrangement. The bone marrow is divided into wedge-shaped hematopoietic 

compartments filled with proliferating and differentiating blood cells in connective 

tissue matrices bordered by specialized vascular structure known as venous 

sinuses (1). The vascular system of marrow consists of venous sinuses, veins, 

and arteries. The major arterial supply of the BM in a long tubular bone is the 

nutrient artery that runs in the central longitudinal axis. The marrow does not 

have any lymphatics. The vascular arrangement provides a high number of small 

vessels and sinuses at the periphery of the bones, and, as a result, 

hematopoiesis is most active at these peripheries. The sinus wall forms a barrier 

between the hematopoietic compartment and the circulation and has three 

distinct components. 

 

1. Endothelial cells that form the inner layer 

2. Adventital cells that form the outer discontinuous layer 

3. A discontinuous basal lamina 
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Figure 1. Vascular architecture of the bone marrow. Presence of extensively 

distributed microvessels comprising of venous sinuses is characteristic of BM. 

The major arterial supply is the nutrient artery that runs in the central longitudinal 

axis. 

Reproduced by per mission from Toxicologic Pathology, Travlos G. 2006 (1), 

copyright Society of Toxicologic Pathology (2006). 
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1.1.3 Physiological properties of the bone marrow 

 Changes in the blood flow on both a volume and velocity basis have been 

shown to influence the delivery of drug carriers to any specific site. Due to a 

variation in the content of the red marrow, there is a considerable variation in the 

amount of blood flowing through the marrow (2). The blood flow in the marrow 

can also be altered experimentally by treating animals with phenylhydrazine or 

acetylcholine (3). However, it has been noted that the average hydrodynamic 

shear in BM micro vessels is lower than in most other organs (4) to maximize the 

exchange and transport of cells across the hematopoietic spaces. This property 

of lower shear rates can be an advantageous in selective delivery of drug 

carriers to the BM. 

 

1.1.4 Bone marrow associated diseases  

 Based on the given importance of this organ, damage to the 

hematopoietic and/or phagocytic components of this multifunctional organ can 

negatively impact the physiology of the body.  

1. For example, a number of pathogenic microorganisms, such as 

Mycobacterium bacilli, Brucellosis, etc., can invade bone marrow and can 

cause undesirable effects such as anemia, leukopenia and chronic 

infections (5).  

2. Bone is one of the most common sites of metastasis originating from 

primary tumors from the breast or prostate causing severe bone pain, 

pathological fractures, spinal cord compression and hypercalcemia (6). 

Bone metastasis frequently occurs in metastatic breast cancer patients 
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(60 to 80 %) and is associated with poor prognosis (5 year survival rate < 

20%) and low quality of life (6).  

3. Myeloproliferative disorders for e.g. chronic myelogenous leukemia (CML) 

characterized by an overproduction of one or more types precursor cells 

originating in the BM (7).  

4. Immune deficiency disorders are associated with a loss of precursor cells 

in the BM (8).  

5. Multiple myeloma characterized as the cancer of the plasma cells 

originates in the BM (9),  

6. Lastly, a large number of anti-neoplastic drugs and therapeutic agents that 

lack cell specific recognition result in bone marrow toxicity such as 

myelosuppression (10). This results in maximum tolerated dose (MTD) 

based therapy, which is less effective against diseases such as cancer. 

 

1.1.5 Treatment of BM associated diseases 

 Current treatment options for BM diseases associated are limited and 

consist of either cytotoxic chemotherapy or bone marrow transplantation. 

Chemotherapy is dose limited due to toxic effects on healthy cells and 

unfortunately, only about 30 percent of patients are candidates for 

transplantation because of age limitations or lack of a suitable HLA-matched 

donor [7]. These facts collectively highlight an urgent need for effective delivery 

of therapeutic agents for the treatment of diseases of the bone marrow and for 

the protection and stimulation of the inherent physiological function of this organ.  



www.manaraa.com

!
*!

 The ability of the bone marrow to uptake particulates from the 

bloodstream has opened up an opportunity for delivery of therapeutic agents 

efficiently by means of drug delivery carriers. In conjunction with the 

physiological and anatomical characteristics of the bone marrow, two types of 

BM targeting strategies have been developed. Porter et al., showed a passive 

targeting approach in which microspheres coated with a copolymer evaded liver 

and spleen uptake and accumulated in the BM (11). This occurred mainly due to 

the highly branched and sinusoidal nature of the BM vasculature and the 

phagocytic uptake. Recently, a targeted therapy using humanized monoclonal 

antibody against RANK ligand (Denosumab) was approved by the FDA for 

treatment of osteoporosis and bone metastases (12, 13). Denosumab inhibits the 

RANK ligand interaction with RANK receptor on precursor osteoclasts, and 

blocks the osteoclast maturation, and inhibits bone resoprtion a pathological 

condition during bone metastases. Targeted therapy comprising of this 

humanized antibody is extremely expensive (14) and such forms of targeting 

suffer from limitations in terms of their specificity to the BM organ leading to low 

overall accumulation in the organ. Therefore, a novel strategy for the delivery of 

drugs to the BM is needed for further enhancing their therapeutic efficacy.  

 

1.2 Nanotechnology 

 In 1959, Nobel Laureate Richard Feynman gave his famous lecture titled 

“There’s plenty of room at the bottom” prompting the research community to 

visualize things at the sub-atomic scale. The culmination of his vision occurred 

through the field of nanotechnology, which refers to the design, characterization, 



www.manaraa.com

!
+!

and application of systems in the nanoscale range (1-100 nm). For any device to 

be considered nanotechnological, it has to be man-made comprising of crucial 

components in the nanoscale range (15). Additionally, it is equally necessary 

that the device possess novel properties that emerge due to its nanoscale 

dimension. These properties could include mechanical, thermal, electrical, 

magnetic, and optical properties. Nanoparticles, for example, take the advantage 

of their dramatically increased surface area to volume ratio. For perspective, 

nanoscale is comparable in dimensions to the interatomic distances in crystalline 

lattices and is illustrated with respect to other familiar things in figure 2. 

 

Although the full potential of nanotechnology is just beginning to be realized, the 

following fields have been impacted by nanotechnology  

1. Information and communication 

2. Medicine  

3. Chemistry and environment  

4. Energy  

5. Consumer goods 

 

Figure 2. Nanoscale size range relative to other familiar objects. The 

nanoscale ranges between 1-100 nm. Nanoscale devices are smaller than 

human cells and are similar in size to biological macromolecules such as 

enzymes, viruses etc. Some commonly used nanotechnology based platforms 

existing in this range are also presented here.  

Reproduced with permission from Journal of Leukocyte Biology, McNeil S, 2005. 

(16), Copyright Society for Leukocyte Biology (2005). 
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1.2.1 Nanomedicine  

 The application of nanotechnology in the field of medicine is termed as 

nanomedicine. Nanomedicine is an emerging field that offers extraordinary and 

far-reaching implications for the biomedical applications such as detection, 

diagnosis and treatment of critical medical conditions including cancer (17), 

cardiovascular diseases (18), tissue repair (19), and for the improvement of 

human health (20). The limitless possibilities offered by nanomedicine could 

possibly open the door for the personalization of medicine for improved patient 

outcomes (21).  

 For commonly used medications, multiple different routes are used 

including topical, local and systemic administration. While systemic delivery such 

as oral and intravenous routes of administration is the most common, each has 

serious disadvantages where an effective concentration larger than clinical dose 

is often required due to rapid clearance of the drug and lack of targeting. For this 

reason, the maximum effectiveness of the drug is limited. Any injected 

therapeutic agent encounters multiple obstacles termed as bio-barriers that 

adversely impact its ability to reach the intended destination at the desired 

concentration (22). These bio-barriers include physiological barriers such as 

epithelial/endothelial membranes, reticulo-endothelial system and biophysical 

barriers such as interstitial pressure gradients, and transport across extracellular 

matrix. For instance in cancer, one of the major issues surrounding the 

chemotherapeutic treatment of solid tumors is the bioavailability of the drug at 

the tumor site. When quantified the drug concentration in a tumor corresponds to 

only 0.001% of the injected dose, permitting the overwhelming majority of the 

drug to be systemically dispersed leading to deleterious effects (23). 
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Nanomedicine holds promise in the development of clinically applicable and 

biocompatible materials for accurate delivery of therapeutics and imaging tracers 

by negotiating these biological barriers (24). Nanotechnology based drug 

delivery systems promise to expand the therapeutic window of drugs by 

increasing delivery to the target tissue and decreasing drug exposure to normal 

tissues (17). Some of the established nanoparticle platforms for nanomedicine 

are represented in figure 2. 

 

1.2.2 Passive vs. Active Targeting 

 Nanotechnology based therapeutics currently approved by the FDA are 

either topical, local, or systemic application based on passive targeting 

mechanism. The progress of clinical translation of novel nano-delivery methods 

has been rather slow as evidenced by only a few nanoparticles that have 

obtained FDA approval in the past few decades (Doxil®, AbraxaneTM). The first 

generation nanoparticle drug, Doxil is a liposomal formulation of doxorubicin, 

which leads to improved drug accumulation in the tumors through passive 

targeting. Similarly, albumin bound paclitaxel formulation also termed as 

Abraxane has shown drastic improvement in therapeutic efficacy due to 

improved solubility over Taxol injection. Passive targeting relies on the enhanced 

permeation and retention (EPR) effect through fenestrations for diffusion into the 

diseased tissue (25). Due to the changes in the microenvironment in the 

diseased tissue, the permeability of the vasculature is enhanced due to the 

presence of sinusoids or fenestrations (Fig. 3). Since nanoparticles such as 

Doxil are smaller in size than the size of these fenestrations, they can 
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extravasate into the diseased tissue leading to increased accumulation. 

However, the limitation of passive delivery strategy is that size and location of 

fenestration and sinusoids are not very specific to the diseased tissue and may 

result in significant non-specific uptake of circulating nanoparticles in healthy 

organs. Thus, an active area of research involves functionalization of 

nanoparticles with targeting moieties that identify and bind to receptors 

overexpressed on or around the diseased sites, consequently maximizing 

localization and accumulation in the disease area (Figure 3) (17). This second-

generation of nanoparticles based on active targeting through biological 

recognition of specific antigens on the surface of diseased cells promises to 

further improve the therapeutic efficacy by enhancing the retention of 

nanoparticles within the diseased site while minimizing side effects associated 

with a potential off targeting (Fig. 3). Nevertheless these delivery strategies still 

primarily rely on extravasation of delivery carriers from discontinuous vessels 

where the size of openings varies depending on the stage of the disease and 

location of the tumor (26). Furthermore, high interstitial pressure in the tumor 

reduces the probability of extravasation of nanoparticles from the vessel into the 

tumor tissue. Thus, developing novel drug delivery strategies that are 

independent of vasculature leakiness has been an area of active research.  

 In this regard, vasculature is attractive target for delivery of therapeutic 

and imaging contrast agents (27). For example in the case of cancer or 

inflammation, the vasculature undergoes significant phenotypic changes in 

response to inflammatory and/or angiogenic stimuli during carcinogenesis. This 

is evident based on the presence of specific endothelial markers such as cellular 

adhesion molecules, including E-selectin (28), ICAM (29), integrin avb5 (30-32), 
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and VEGFR-2 (33) expression is elevated on the surface of the endothelial cells. 

This significant difference in expression of surface receptor proteins between 

normal and tumor endothelium make tumor associated vasculature an attractive 

target for drug delivery and provide an excellent rationale for therapeutic 

exploitation (34, 35).  
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Figure 3. Different targeting strategies employed for drug delivery. Passive 

(left), active (middle) and active vascular targeting (right). During passive 

targeting the nanoparticles (NPs) extravasate through the permeable openings 

in the tumor endothelium. This process can be further improved by active 

targeting of the NPs to receptors on the tumor cells. In active vascular targeting, 

nanoparticles favor binding to receptors overexpressed on tumor endothelium, 

enhancing their accumulation in tumor tissue.  

Adapted with permission from ACS Nano, Farokhzad et al, 2009 (25). Copyright 

American Chemical Society (2009). 
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 Having introduced the first two generations of nanoparticles, it is clear that 

their ability to negotiate biological barriers and carry drug payload to the desired 

sites offers multiple therapeutic advantages. However, to add further 

functionality and another dimension of manipulation to these existing carriers, a 

third generation of nanocarrier comprising of multiple components is presented 

here that has the potential to revolutionize the delivery of therapeutics by 

distributing the tasks of bio-barrier avoidance, targeting, and therapeutic effect 

among different stages.  

  

1.2.3 Multistage Drug Delivery        

 Our laboratory has recently developed a novel multistage drug delivery 

strategy, capable of multiple functions such as navigating biological barriers 

encountered by nanoparticles and maximizing site-specific localization and 

release of therapeutics therein. This platform comprises of nanoporous silicon 

particles that can be loaded with different payload of nanoparticles including 

therapeutic and imaging agents (36). The rationale for this approach is that 

MSVs shoulder the burden of efficiently transporting, shielding, and controlling 

the rate of release of the nanoparticle payload. A schematic describing this 

concept is presented in Fig.4. 

 MSVs are fabricated using well-established lithographic techniques for a 

precise control of shape, size, and porosity (37, 38). The outer dimension of the 

MSVs can be altered from 500 nm to 20 µm in size with different shapes and the 

mean pore size ranges from 5 nm to 80 nm, and the porosity ranges from 40% 

to 80% (36, 37) (Fig. 5). 
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Figure 4. Three generation of nanovectors. First generation of nanovectors is 

based on passive targeting (top). Second generation comprises of active 

targeting through biological recognition of targets (middle). Third generation 

consists of multifunctional delivery systems that comprises of different 

components such as the MSV (bottom). Reproduced with permission from 

Pharmacological Research, Sakamoto et al, 2010 [6], copyright Elsevier (2010). 
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Figure 5. Different types of MSVs. SEM images of different shapes of MSVs 

(A-D) and different porous characteristics (E-H). List of different geometries 

possible to microfabricate (table) 

 

 

 

 

 

 

 

 

Shape Dimension Volume 
µm^3 

Hemispherical Outer Diameter 
3 um 
2.1 um  
1.6 um 
1.0 um 

5.0  
1.5 
0.80 
0.17 

Disk Diameter x Thickness 
3 x 0.71 um 
2 x 0.36 um 
1.5 x 0.45 um 
0.7 x 0.44 um 

5.0  
1.5 
0.80 
0.17 

Cylindrical Diameter x Height 
1.5 x 2.8 um 
1 x 1.9 um 
1 x 1 um 
0.7x 0.44 um 

5.0  
1.5 
0.79 
0.17 

Rod Length x Width x Height 
= 
2.2 x 1.5 x 1.5 um 
1.5 x 1 x 1 um 
1.2 x 1 x 0.67 um 
0.7 x 0.7 x 0.35 um 

5.0  
1.5 
0.80 
0.17 
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1.2.3.1 Rational Design of MSVs 

 From a mathematical point of view, the vascular ‘journey’ of any 

systemically injected particle can be broken down into three events: (i) 

margination dynamics, (ii) firm adhesion and (iii) control of internalization. 

Margination dynamics is the drifting of nanovectors towards the blood vessel 

walls. Firm adhesion is the ability of a nanovector to recognize a vascular 

biological target and attach firmly at the blood vessels withstanding the 

hydrodynamic forces and endocytosis is referred to the ability of an adherent 

nanovector to control cellular uptake (Fig. 6).  

 Combining together in silico mathematical modeling with in vitro and in 

vivo experimental validation, the MSVs have been designed to possess the 

geometry to enhance the probability for margination and adhesion to the 

vascular endothelium and subsequent cellular uptake. Using a parallel plate flow 

chamber under controlled hydrodynamic conditions, particles of different shapes 

were analyzed and the non-spherically shaped particles drifted laterally within 

the blood flow, thus increasing the probability of interacting with the blood vessel 

walls, and facilitating the search for specific vascular targets as compared to 

spherical particles (39, 40). Furthermore, oblate spherical particles that resemble 

platelets in terms of their geometry showed firm adherence to the vessel wall 

under flow conditions as compared to spherical particles for the same number of 

ligand-receptor bonds (41). And lastly, the rate of internalization of particles by 

cells can be adjusted by controlling the aspect ratio of the particle, as non-

spherical particles resist internalization to a greater extent than spherical 

particles (42). Therefore, depending on the biological properties of the target 

tissue, a nanoparticle can be selected to have the geometrical and physical 
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properties to optimize adhesion and cellular uptake or a combination thereof 

(43). 
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Figure 6. Steps in the vascular journey of a circulating particle. Margination 

dynamics is the drifting of nanovectors towards the blood vessel walls. Firm 

adhesion is the ability of a nanovector to recognize a vascular biological target 

and attach firmly at the blood vessels withstanding the hydrodynamic forces. 

Endocytosis is referred to the ability of an adherent nanovector to control cellular 

uptake. 
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1.2.3.2 Loading of nanoparticles into MSVs 

 MSVs can be loaded with various types of nanovector construct within the 

approximate diameter range of 5–100 nm. Depending on the pore size, different 

types and amount of nanoparticles can be loaded including labeled 

nanoliposomes, gold nanoparticles, iron oxide nanoparticles, Quantum dots (Q-

dot) and carbon nanotubes (SWNTs) (36) (Fig. 7). Once a nanoparticle payload 

is incorporated into the porous structure of the MSVs, factors governing the 

release of nanoparticles include MSV degradation rates, polymeric coating, and 

nanoparticle design strategies (e.g., environmentally sensitive cross-linking 

techniques with pH, temperature, and/or enzymatic triggers). In addition, the 

surface of the MSV can be chemically modified with different functional groups, 

which allows for subsequent bioconjugation of ligand molecules for a site-

specific release of the payload for a desirable period.  
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Figure 7. Loading of nanoparticles into MSV. Bright field confocal microscopy 

of a single MSV (A). Confocal image showing MSV loaded with single walled 

nanotubes (green) (B), Quantum-dots (red) (C) and double loading (D). SEM 

image of MSV, green and red arrows show the spatial distribution of 

fluorescence (E).  

Reproduced with permission from Nature Nanotechnology, Tasciotti et al, 2008 

(36). Copyright Nature Publishing Group (2008). 
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1.2.3.3 Biodegradation of MSVs 

 Silicon is an attractive material in drug delivery because silicon degrades 

into harmless silicic acid, which is abundant in nature. The degradation kinetics 

of MSV is influenced by the porosity of the silicon particles. MSVs of different 

porosities ranging between 15-70 % undergo degradation at different rates. 

Based on silicon analysis, MSVs with 60% porosity degraded completely within 

30 hours, whereas MSVs with 20% porosity retained their overall structure over 

40 hours (Fig. x). Therefore, low porosified particles can serve as an ideal 

delivery carrier for sustained release applications. SEM images showed that 

60% porosified MSVs degraded over time and the outer ring structure was first 

lost and then the overall MSV size became smaller. Similarly, the pore size of 

MSVs increased over time, suggesting that enlargement of pore size due to 

degradation is one of mechanism by which a payload can be released from the 

porous structure (Fig. 8). 
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Figure 8. Degradation kinetics of MSVs. (A) Comparison of degradation 

kinetics of MSVs of different porosities as analyzed by Inductively Coupled 

Plasma-Atomie Emission Spectroscopy. (B) SEM images of MSVs incubated in 

saline solution (pH-7.2) at 37 oC for different time points. 

Reproduced with permission from J Biomed Mater Res A, Godin, B. et. al. 2010, 

(44), copyright John Wiley and Sons 2010. 
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1.2.3.4 Biocompatibility of MSV 

 Porous silicon is an attractive material (45, 46), which has been 

investigated for possible applications in drug delivery by loading of nanoscale 

payloads such as protein (47), enzymes (48), drugs (46, 49), and nanocarriers 

(50). Unlike bulk silicon, porous silicon is highly biodegradable under 

physiological conditions. The ability of the porous silicon nanostructures to 

degrade into relatively harmless silicic acid byproducts presents fewer 

challenges for long-term applications. Similar to other porous silicon particles, 

MSVs are fully biodegradable under physiological conditions, with biologically 

benign degradation products (44). In addition, biocompatibility studies of MSVs 

have provided evidence that the intravenous administration of MSVs as a drug 

carrier is totally safe (51). 
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1.3. Adhesion molecules  

 Cellular adhesion molecules are expressed on the cell surface and helps 

in cell-cell interaction and adhesion. Some of the most common adhesion 

molecules include selectins (E-, P-, L- selectins), vascular cell adhesion 

molecule 1 (VCAM-1), intracellular adhesion molecule 1 (ICAM-1), and integrins 

(!v"5, !v"3). Selectins were originally named due to their selective expression 

and the presence of a lectin domain in the molecule. All selectin proteins consist 

of a lectin domain at the amino-terminus, followed by an EGF-like domain, 

variable number of consensus repeat (CR) domains, a transmembrane portion 

and ending with a short cytoplasmic tail (52). There is high homology (65%) 

between the primary sequences of different selectins throughout the lectin and 

EGF-like domains but the CR domains are less conserved. Their site of 

expression best classifies the selectins: for example activated endothelium (E-

selectin), lymphocytes (L-selectin) and platelets (P-selectin).  

 

1.3.1 E-selectin (CD62E, ELAM-1) 

 E-selectin is a member of the selectin family and is specifically 

synthesized by endothelial cells. In the very first experiments in 1985, treatment 

of endothelial cells with cytokines as well as bacterial endotoxins resulted in a 

dramatic increase in adhesion of isolated blood neutrophils and E-selectin was 

identified as a participant in this process. E-selectin expression is minimal on 

normal endothelial cells but the expression is induced in activated endothelial 

cells in response to cytokines such as tumor necrosis factor ! (TNF-!), and 

interleukin (IL)-1". E-selectin gene contains binding sites for transcription factors 
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such as NF-#B and AP-1. And in the presence of cytokines, E-selectin protein 

expression is rapidly induced, which peaks at 4 hours followed by a decline 

within 24 hours of stimulation. This decline in expression is due to the slow 

internalization and lysosomal degradation of the protein (53).  

 

1.3.1.1 E-selectin – Expression and function 

 The major function of E-selectin is the recruitment of leukocytes to the site 

of inflammation. Leukocytes expressing a sialylated carbohydrate ligand (sLex, 

sLea) for E-selectin, bind to the inflamed endothelium via E-selectin, and roll 

along the endothelial surface to subsequently transmigration to the tissue (Fig. 

9). Some studies have suggested that E-selectin can also participate in the 

adhesion of T-lymphocytes and monocytes to activated endothelial cells (54, 

55). Abundant infiltration of leukocytes and immune cells to a tissue leads to 

pathological inflammatory conditions such as diabetes, atherosclerosis, 

rheumatoid arthritis and cancer. In case of cancer, infiltrated leukocytes secrete 

cytokines and stimulate the activation of fibroblasts, resulting in a local invasion 

through degradation of extracellular matrix (56). E-selectin antagonist 

(Cimetidine), a suppressor of E-selectin expression, has shown improved 

therapeutic outcome in colorectal cancer patients with metastasis from cancer 

cells that are sLex positive (57). In addition to E-selectin-mediated inflammation, 

a flurry of recent evidence has suggested the involvement of E-selectin in 

attachment and transmigration of cancer cells through the endothelium (58-60). 

Disseminated cancer cells express E-selectin ligands on the surface and exploit 

the E-selectin dependent recruitment mechanism to extravasate to distant site, a 

process termed as vasculogenic mimicry (61). The interaction of metastatic 
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cancer cells to endothelial cells via E-selectin has been shown to induce a bi-

directional signaling that results in the activation of the ERK-Src pathway in the 

cancer cells and increased endothelial permeability, facilitating the 

transendothelial migration of cancer cells (62). 

 Studies have shown that E-selectin is constitutively expressed on 

postcapillary venules in the bone marrow endothelial cells (63) and mediates 

tethering and rolling interactions through E-selectin ligands on hematopoietic 

progenitor cells for their entry into bone marrow (64, 65) (Fig. 10A). This fact was 

further corroborated by a study that showed that stem cells not expressing E-

selectin ligands such as mesenchymal stem cells homed to the bone marrow by 

engineering of their CD44 surface molecules into an E-selectin ligand (66). 

Furthermore, using in vivo imaging it was recently demonstrated that E-selectin 

expression in the bone marrow is discrete and discontinuous in specialized 

microdomains that co-localizes with homing sites of leukemic cells (67) (Fig. 

10B). E-selectin also plays a role in homing of leukemic stem cells to bone 

marrow by binding carbohydrate ligands on their surface (68). 
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Figure 9. Function of E-selectin in recruitment of circulating cells. Presence 

of cytokines secreted from the inflammatory tissue leads to overexpression of E-

selectin on the endothelial cells. Circulating cells including leukocytes and 

cancer cells express E-selectin ligands (sLex, sLea), which aid in the E-selectin 

mediated rolling followed by tight adhesion with other adhesion molecules such 

as ICAM. This subsequently leads to arrest and transmigration of these cells into 

the tissue.  
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Figure 10. E-selectin expression on bone marrow endothelium. (A) 

Constitutive expression of E-selectin on the bone marrow endothelium. (B) In 

vivo confocal imaging shows that E-selectin expression co-localized with homing 

of leukemic cells in bone marrow. Green - E-selectin, Red – Nalm-6 cells derived 

from Acute Lymphoblastic Leukemia. Scale bar, 100 !m. 

Reproduced with permission from Nature, Sipkins D.A et. al. 2005 (67). 

Copyright Nature Publishing Group 2005. 
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1.3.1.1 E-selectin ligands for targeting 

 The two key characteristics of E-selectin expression namely the unique 

temporal and spatial expression profile and tissue specificity have prompted 

substantial interest in the potential therapeutic exploitation of this protein. In an 

attempt to develop tools for targeting E-selectin, numerous efforts have been 

made to develop a high affinity ligand including, a monoclonal antibody (69), 

peptide (70), and carbohydrate ligand (71). These ligands have shown binding to 

the inflamed vasculature in both experimental animal models and clinical trials 

(72). Some of these ligands have been conjugated to different types of 

nanoparticles including iron oxide nanoparticles, liposomes, and micelles for 

improved targeting performance to the inflamed vasculature of different disease 

models including inflammatory conditions and cancer (73-75). However the use 

of these ligands for active targeting remains a challenge due to various reasons, 

such as low affinity and specificity, lack of serum stability, immunogenicity, and 

high cost (70, 71). Therefore, E-selectin ligands that can overcome these 

limitations for clinical applications for targeted delivery are highly desirable. 

 

1.3.2 Thioated Aptamer ligands 

 Aptamers are structurally distinct RNA and DNA oligonucleotides that can 

mimic protein-binding molecules based on their unique tertiary structures. 

Aptamers against a target molecule are identified through a selection-based 

process known as systematic evolution of ligands by exponential enrichment 

(SELEX) first described by Gold and colleagues in 1990 (76). This process 

comprises of first a synthesis of a combinatorial nucleic acid library (DNA or 
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RNA), which is incubated with the desired target molecule under suitable binding 

conditions. The bound aptamers are partitioned and enriched through PCR 

amplification for another round of selection. Repeated iterative cycles (normally 

around 10 cycles) lead to a high affinity aptamer molecule against the target 

molecule of interest. Based on these characteristics such as high affinity, easy 

and cost effective synthesis, long shelf-life, and minimal immunogenicity, have 

made aptamers attractive alternatives to small molecule drugs and antibodies for 

diagnostic and therapeutic applications (77). !

 Macugen (Pegaptanib) a RNA-based molecule was the first aptamer 

approved by FDA to treat age-related macular degeneration (78). However, 

medical applications of unmodified aptamers are limited to transient treatment 

(79) or local administration (80), due to lack of in vivo stability against nucleases 

(81, 82). Therefore, for improvement of serum stability of aptamers various 

chemical modifications incorporated into the sugars or internucleotide 

phosphodiester linkages have been successfully achieved (83-85). For example, 

AS1411 a modified aptamer that binds nucleolin has shown increased in vivo 

stability due to the formation of dimers and a quartet structure (86). Phase II 

clinical trials of AS1411 for the treatment of real cell carcinoma are currently 

underway. Similarly, aptamer conjugated nanoparticles have been successfully 

used for a targeted delivery of chemotherapeutic drugs both in vitro (87) and in 

vivo (88).  

 One of the modifications leading to nuclease-stabilized aptamers is the 

sulfur substitution of phosphate oxygen on the DNA backbone, which results in 

thioated aptamers or thioaptamers with higher affinity to target protein (89). This 

increased affinity can be attributed to sulfur being a softer anion resulting in 
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decreased interactions with solvated cations (90). Thio-substitution of the 

nucleotide backbone has also shown to improve the stability of the aptamer with 

no increase in toxicity (91). Thio-substitution can lead to monothioate or dithioate 

aptamers (Fig. 11). Recent advances in combinatorial chemistry have enabled 

the construction and screening of large random thioaptamer libraries for affinity 

to proteins or other targets such as NF-IL6, HIV RT, Venezuelan Equine 

Encephalitis nucleocapsid, TGF-" HepC IRES nucleic acid, NF-#B and CD44 

(92-94). Based on these properties thioaptamers are attractive ligands for in vivo 

targeting. The presence of positively charged amino acids on the E-selectin 

protein (Fig. 12) presents an opportunity to screen thioaptamer ligands against 

E-selectin, which would be very advantageous for targeting E-selectin in vivo. 
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Figure 11. Structure of thioaptamers. The phosphate backbone substitution of 

one of two non-bridging oxygens result in either the monothioate or dithioate 

aptamers respectively.  

!

Figure 12. Electrostatic surface of E-selectin protein. Blue area represents 

positively charged amino acids consisting of hydrophilic-charged amino acids. R-

arginine; K-lysine; E-glutamate; D-aspartate; H-histidine. 
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1.4 Objectives and Hypothesis 

 Bone marrow is a target organ site involved in multiple diseases 

including myeloproliferative disorders and malignancies such as myeloma and 

metastases from primary sites such as breast and prostate. Most of these 

diseases are associated with poor quality of life and the treatment options are 

limited, and therefore, there is a critical need to develop effective therapeutic 

strategies that allows for selective delivery of therapeutic payload to the sites of 

bone marrow involvement. E-selectin is constitutively overexpressed on the 

bone marrow vasculature, but almost absent in normal vessels, and therefore, E-

selectin targeted drug delivery presents an ideal strategy for the delivery of 

therapeutic nanoparticles to the bone marrow. Nanotechnology-based drug 

delivery systems provide the opportunity to deliver drugs to the target tissue 

while decreasing exposure to normal tissues.  

 

 The objective of this study was to develop a drug delivery carrier 

employing nanotechnology specifically targeted to the bone marrow for the 

delivery of therapeutic and imaging agents. We hypothesize that a multistage 

approach based on first stage biodegradable silicon porous particles 

conjugated with a high affinity E-selectin thioaptamer ligand will target 

preferentially to the bone marrow. 

 

To achieve the aforementioned goals, the following three Specific Aims are 

proposed.  
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Specific Aim 1: Characterization of the porous silicon multi-stage vector. 

The multistage vector (MSV) was characterized in terms of size, surface charge 

and biocompatibility. The biodistribution and in vivo degradation of the MSV was 

analyzed. And lastly, sustained gene silencing in tumors by siRNA delivery 

through MSV was demonstrated. 

 

Specific Aim 2: Identification of high affinity E-selectin thioaptamer ligand. 

A high affinity thioaptamer ligand against E-selectin was identified using a two-

step screening strategy.  ESTA-1 was characterized in terms of E-selectin 

binding in vitro and in vivo.  

 

Specific Aim 3: Development of bone marrow targeted multistage vector. 

ESTA-1 conjugated MSVs were developed and characterized. ESTA-MSVs 

showed binding to E-selectin on cells as well as homing to the bone marrow and 

subsequent delivery of therapeutic nanoparticle payload to the bone marrow 

tissue. 
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Chapter 2. Materials and Methods 

2.1 Cell culture  

 The human microvascular endothelial cells (HMVECs) were a kind gift 

from Dr. Rong Shao (Biomedical Research Institute, Baystate Medical 

Center/University of Massachusetts at Amherst, Springfield, MA). HMVEC were 

grown in endothelial basal medium-2 (Lonza, supplemented with 10% (v/v) Tet-

approved fetal bovine serum, 100 U/ml penicillin and 10 mg/ml streptomycin, 1 

mg/ml epidermal growth factor and 50 mg/ml hydrocortisone. Hybridoma cells 

were purchased from American Type Culture Collection (Manassas, VA, cat # 

HB-11684) and grown in complete growth media comprising of RPMI 1640 

medium (HyClone, Waltham, MA), 90% and horse serum, 10%. Breast cancer 

4T1 cells were purchased from ATCC (cat # CRL-2539) and grown in RPMI-

1640; (HyClone, Waltham, MA) supplemented with 10% FBS, penicillin–

streptomycin and L- glutamine. HL-60 was purchased from ATCC and grown in 

Iscove's Modified Dulbecco's Medium supplemented with 20% FBS. 

 

2.2 Development of ES-Endo cells 

 E-selectin cDNA was obtained (Origene, Rockville, MD) and the ORF was 

amplified by PCR using the primers listed in Table 1 and ligated into TOPO Blunt 

(Invitrogen, Carlsbad, CA). E-sel TOPO pBlunt was digested with Mlu I and Sal I 

to E-selectin gene was inserted into pTRE-Dsred expression vector (Invitrogen, 

Carlsbad, CA). A clone containing E-selectin-dsred was selected and verified to 

contain the construct by double digestion with above enzymes. HMVEC were 
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stably transfected with rtTA plasmid (Clontech, Mountain View, CA) and the 

clones were screened with 0.5 mg of G418 for two weeks. A positive clone was 

selected The selected clone was co-transfected with 15 !g of pTRE-Tight-BI-

human E-selectin-RFP and puromycin resistant plasmid using using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). The cells were further incubated 

in the presence of puromycin (300 ng) and the positive clone was selected by 

single colony isolation and analyzed for E-selectin inducible expression. 
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Table 1. List of primers used for PCR and sequencing reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR Primers  

Sense primer GGTACCACGCGTACAATGATTGCTTCACAGTTTCTC 

Antisense primer GTCGACATCGATGGCTTAAAGGATGTAAGAAGGCTT 

Sequencing primers  

Position 450 CACGGTGAATGTGTAGAG 

Position 901 AAAGCTGTGACATGCAGG 

Position 1353 ACCTACAAGTCCTCTTGTGCC 
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2.3 Screening of E-selectin thioaptamer (ESTA-1)  

2.3.1 Synthesis of thioaptamer library 

 ESTA was chemically synthesized as described previously (37, 95). 

Briefly, sphosphoramidite chemistry in 1 µmol scale was used on a DNA 

synthesizer (Experdite 8909, Applied Biosystems). The sequence of ESTA was 

programmed on the synthesizer with a 3’ thioate linkage at every adenine 

residue. At the end of the synthesis, 5’ end of the oligo was coupled with Cy3 

phosphoramidite (Glen Research, VA) with the MMT protective group remaining. 

Then the 5’-carboxy modifier-C10 (Glen Research, VA) was coupled to the 5’ 

end of the oligo. The oligo was cleaved from the beads and the protecting 

groups were removed with 0.4M methanolic NaOH at room temperature for 24-

36 hr. The deprotected oligo was diluted with water and desalted in a 10,000 

MWCO spin column (Amicon) at 4000 x g and dried on the lyophilizer. The oligo 

was then purified on FPLC with a monoQ ion exchange column. Biotininylated 

double stranded PCR products were mixed with Streptavidin coated magnetic 

particles in binding bufferA (10 mM Tris-HCl, 2 M NaCl, 1 mM EDTA, at pH 7.5) 

and incubated at room temperature with gentle rotation for 30 minutes according 

to the manufactures instructions. The beads were washed with the binding buffer 

A and followed by alkaline melting (0.1M NaOH) to separate the unbiotinylated 

single stranded DNA (ssDNA) from the bead-bound double stranded DNA 

(dsDNA). After purifying using spin columns the single stranded TA library was 

taken in buffer B (Phosphate buffer Saline supplemented with Ca2+ and Mg2+, 

and 5 mM MgCl2), denatured at 95°C and cooled on ice prior to use to favor the 

formation of hairpin loop structures.  



www.manaraa.com

!
(%!

2.3.2 Combinatorial selection of thioaptamers 

 The selection of TA against E-selectin was carried out by the solution 

based nitrocellulose filter method as described previously (ref). Briefly, the 

recombinant human E-selectin protein (240 pmoles in PBS, was mixed with a 

previously nitrocellulose filtered (to exclude the sequences that bind to the 

nitrocellulose) ssDNA TA library (200 pmoles) in binding buffer A was and 

incubated at room temperature for 2 hours. The reaction mixture was filtered 

through the nitrocellulose filter and washed 3 times with the binding buffer to 

remove any unbound and weakly bound TAs. The TA-E-selectin complex 

retained on the filter was eluted with 8 M urea solution. The eluent was PCR 

amplified by the above-described method and analyzed by nondenaturing 15% 

polyacrylamide gel electrophoresis (integrity). Stringency of the selection was 

increased at each iterative cycle by decreasing the amount of E-selectin, 

gradually lowering the incubation time (120 minutes at cycle 1 and gradually 

reduced to 40 minutes at cycle10) and increasing the number washes. The TA 

libraries obtained from rounds 5 and 10 were PCR amplified and cloned into 

E.coli. Plasmids were purified and DNA sequences were isolated and a subset 

of sequences was determined. The individual TA sequences were synthesized 

with cyanine-3 label at the 5’ end, from the plasmids, with 5’-biotinylated forward 

primer and 5’cyanine-3 labeled reverse primer by PCR amplification and used in 

the binding experiments.  
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2.3.3 TA binding to Endothelial cells 

 All binding experiments with TA were done with ES-Endo cells plated onto 

plastic plate and cultured overnight to allow them to attach.  After E-selectin 

induction, cells were incubated with thioaptamer at indicated concentrations (10-

100 nM) for 15 minutes at 37 °C. The cells were washed with ice cold PBS to 

remove unbound TA and fixed with 4 % paraformaldehyde for 10 minutes. The 

cells were stained with 1.0 !g/mL Hoechst for 10 minutes to counterstain the 

nuclei. TA binding to the cells was assessed by fluorescence microscopic 

analysis (TE2000-E, Nikon, final magnification 60x).  All images were acquired 

under the same exposure conditions for the comparison of binding.  

 

2.4 Purification of E-selectin antibody  

 Hybridoma cells were grown in complete growth media containing 10 % 

FBS. Supernatant (100 ml) was collected after spinning down cells at 1200 rpm 

and filtered through 0.2 !m filter followed by a centrifugation through a centricon 

filter (MWCO = 30K) at 4500 rpm for 30 minutes. The fraction in the filter was 

collected and pooled together. 10X PBS (1/10th volume of the collected solution) 

was added to have PBS like condition for binding. 80 !l of goat anti-mouse IgG 

magnetic beads (New England BioLabs, Ipswich, MA) were pre-washed with 

cold PBS twice using a magnet. The supernatant from the cells was incubated 

into 4 tubes containing (1/4 beads each) for overnight at 4 °C on a rotating block. 

Using the magnet excess solution was removed and the beads were washed 4 

times with cold PBS (100 !l each). To remove IgG bound to the beads 100 !l of 

elution buffer was used and immediately after 100 !l per ml of 1M Tris (pH 7.4) 
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was added to readjust pH. The solution was dialyzed with PBS for 4 hours and 

collected. Finally, the solution was mixed with 15 % glycerol and aliquoted to be 

stored at -20 °C. 

 

2.5 Cell viability studies 

 ES-Endo cells were seeded at 10,000 per well in 96-well tissue culture 

plate and with TA at indicated concentrations for 48 hours, with pre-induction 

with doxycycline (1000 µg/ml) for 5 hours. For the measurement of cell viability, 

10 µl MTT (5 mg/ml) was added to each well and incubated for 4 hours. The 

formazan was dissolved in 150 !l of DMSO and measured by absorbance of 

each well using plate reader at 490 nm. 

 

2.6 Development of Multistage vectors (MSVs) 

2.6.1 Fabrication of MSVs  

 MSV were fabricated by electrochemical etching of silicon wafers in the 

Microelectronics Research Center at The University of Texas at Austin as 

previously described (37). The physical dimensions of MSV were verified by 

high-resolution scanning electron microscope.  

2.6.2 Surface modification and characterization of MSVs 

 The modification of MSV was a three-step reaction as described 

previously (96). The suspension containing MSVs was transferred to a glass 

beaker and the isopropanol (IPA) was evaporated overnight using a hotplate set 

at 110 ˚C. The dried MSVs were then treated with piranha solution (1 volume 
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H2O2 and 2 volumes H2SO4) with heating to 110–120 ˚C for 2 h with intermittent 

sonication to disperse the MSVs. Oxidized MSVs were washed in IPA, and then 

suspended in IPA containing 9 % (v/v) 3’-aminopropyltriethoxysilane (APTES) 

(Sigma–Aldrich, St. Louis, MO) for 16 h at 35 °C and 1300 rpm. The APTES-

modified MSVs were washed in IPA and the surface charge was measured by 

Zeta Pals (Brookhaven Instruments, Holtsville, NY) as described previously in 

(96). The size, zeta potential and the number of MSVs was measured using a 

Multisizer (Beckman) and ZetaPals instrument (Brookhaven Instruments). 2 !l of 

MSVs were added to 1.4 mL of 10mM phosphate buffer (pH 7.3) and the 

analysis was conducted at room temperature (23 °C) in triplicates. 

 

2.7 Conjugation of ESTA to MSV 

 Conjugation of ESTA to MSV was carried out using a PolyLink Protein 

Coupling Kit as per manufacturers protocol (Bangs Laboratories, Inc., Fishers, 

IN). Briefly, 0.5 ml of 50 µM Cy3 labeled ESTA was incubated in 150 µL of 

PolyLink Coupling Buffer. 20 µL of EDAC (200 mg/mL) and 20 µL of sulfo-NHS 

(200mg/mL Pierce biotechnology) solution were added to the ESTA solution and 

mixed end-over-end for 30 minutes at room temperature. 4 x 108 NH2 modified 

MSV were resuspended in 0.17 mL PolyLink Coupling Buffer and added to the 

ESTA solution and incubated for 4 hours at room temperature with gentle 

mixing.  The mixture was then centrifuged for 10 minutes at approximately 4000 

x G and the pellet was resuspended and stored at 4˚C in PolyLink Wash/Storage 

Buffer.  
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2.8 Infrared Spectroscopy 

 Fourier transform infrared spectroscopy (FTIR) was preformed on a 

Nicolet 6700 (Thermo Scientific, Waltham, MA) with a smart diamond crystal 

attenuated total reflection (ATR) accessory. To confirm the ESTA-1 conjugation 

to the MSV, the IR spectrum of ESTA-MSV was compared with ESTA and MSV 

alone. Samples (105/!l) were diluted in deionized water and a 2 !L drop from 

each sample was placed on the diamond crystal and subjected to vacuum. Each 

sample was run for 150 scans at a resolution of 4 wavenumbers. 

 

2.9 Flow cytometry 

 For analysis of E-selectin expression a 10 cm Petridish space was used 

for cell culture to yield about 1 million cells. The medium was removed and cells 

were washed with PBS. 5mM EDTA was added to the cells and incubated in 37 

°C for 10 minutes until the cells became rounded. The cells were then scraped 

using a cell lifter and collected in FACS tube. Cells were then spun down at 1500 

rpm for 5 minutes to remove EDTA and re-suspended and washed twice in PBS 

containing 2 % FBS.  5 !l of PE labeled anti-E-selectin monoclonal antibody (BD 

# 551145) per 1 million cells was added and incubated on ice in dark for 45 

minutes. Cells were then washed with PBS buffer containing FBS twice and 

analyzed using the PE filter on a flow cytometer (Becton Dickinson, 

FACScalibur). For fluorescent analysis of particles, 105 MSVs were incubated in 

PBS and washed for two times. The fluorescence was measured on the flow 

cytometer (BD Biosciences). 
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2.10 Endothelial cell adhesion studies  

 E-selectin inducible endothelial cells (ES-Endo) were cultured as 

described previously (95). For MSV adhesion studies, ES-Endo were plated on 

16-well chamber slides and induced with doxycycline (2000 ng/ml) for 5 hours. 

105 MSV were added to each well in the presence of complete growth media 

and incubated with cells for 1 hour at 4˚C. The media was removed and the cells 

were washed twice to remove unbound particles by mild shaking. The cells were 

then fixed with 4 % paraformaldehyde and stained with FITC-phalloidin and 

DAPI. The slide was mounted and analyzed by microscope. The number of MSV 

bound per cell was counted at five different fields of view.   

 

2.11 Loading of nanoparticles into ESTA-MSV   

 Quantum dots (QD 655) were purchased from Invitrogen (Cat 

#Q21521MP, Carlsbad, CA) and iron oxide nanoparticles (IONs) were 

purchased from Ocean Nanotech (Cat #SHA-15-05, Springdale, AR). DOPC 

liposomes were developed and loaded as described previously in (96). ESTA-

MSVs (3–5x106) were loaded with IONs (25 !g; aminoPEG modified) in borate 

buffer (25 !L), then centrifuged and washed twice in fresh borate buffer or 

Millipore water. Iron oxide loading was quantified using a Prussian blue assay. 

An aliquot from each sample (5 !L) was heated at 50 °C in 6N HCl (120 !L) for 2 

hours with agitation to convert IONs into free iron. Iron was oxidized using 

ammonium persulfate (0.1 mg/mL; BioRad, Richmond, CA) and a color reaction 

was initiated by adding 5% potassium hexacyanoferrate (K4[Fe(CN)6] 3H2O) 

(125 !L; Sigma–Aldrich) and incubating for 10 minutes. A standard curve was 
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generated using iron (III) hexahydrate (Sigma–Aldrich, St. Louis, MO), and the 

absorbance was read at 690 nm using a plate reader spectrophotometer. 

 

2.12 Immunofluorescence 

 Cells were grown in chamber slides and the media was removed. The 

chamber slide was disassembled and the cells were washed with PBS for 5 

minutes twice at room temperature (RT). The cells were fixed with 4 % 

paraformaldehyde in PBS for 15 minutes at RT. Paraformaldehye was removed 

and cells were washed with PBS for 5 minutes each for three times at RT. If 

required cells were permeabilized with 0.1 % Triton-X 100 in PBS for 10 minutes 

and washed with PBS for 5 minutes each for three times at RT. For blocking 

cells were incubated with 10 % goat serum in PBS for 1 hour at RT. Blocking 

solution was removed and the cells were incubated with primary antibody (anti 

E-selectin) at dilution 1:100 in 5 % goat serum in PBS for overnight at 4 °C. Cells 

were washed with PBS for 5 minutes each for three times at RT and incubated 

with secondary antibody (Anti-mouse 488) at dilution 1:400 in 5 % goat serum in 

PBS for 30 minutes at RT. Cells were covered with aluminum foil during 

incubation for all further steps. The cells were washed with PBS for 5 minutes 

each for three times at RT and the nucleus was stained using Hoechst Stain 

(1:2000 dilution) (Invitrogen, Carlsbad, CA) in PBS for 10 minutes RT. Cells 

were washed with PBS for 5 minutes once and rinsed with water and the slide 

was air dried under the foil. The slide was mounted using mounting media and 

examined under the fluorescent microscope and stored in the dark at 4 °C. 
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2.13 Animal studies 

 All animals were handled in strict accordance with good animal practice 

as defined by University of Texas Health Science Center Institutional Animal 

Care and Use Committee (IACUC), and all animal work was approved by the 

committee.  

  

2.13.1 Animal tumor models 

 Orthotopic mouse models of ovarian carcinoma were developed by 

intraperitoneal injection of 106 SKOV-3ip into nu/nu animals as previously 

described (97). Breast tumors were inoculated by injecting 105 4T1 cells into the 

mammary fat pad of nu/nu mice.  

 

2.13.2 Targeting studies 

 For in vivo targeting experiments a total of 5 x 107 MSV were 

intravenously injected to mouse through the tail vein. Major organs including 

liver, kidney, spleen, lung, and heart and bone marrow were harvested after 5 

hours and processed for silicon contents and histological analysis. 

 

2.14 Silicon content analysis  

 All the major organs were collected and lysed using RIPA buffer 

containing DNAse. Organs were homogenized using a homogenizer and spun 

down at 10,000 rpm for 20 minutes and washed the pellet once with water. 3 ml 

of TMAH (Tetramethyl ammonium hydroxide 25 % in water, Fischer Scientific) 
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was added and the samples were incubated at 50 °C for 16 hours to dissolve the 

silicon particles. 500 !l of sample was dissolved in 2.5 ml DI water to measure 

the silicon content using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). To measure amount of silicon in injections, 10 !l of 

injected particles were dissolved in 90 !l of TMAH at 50 °C for overnight and 100 

!l from this solution was analyzed on the ICP. To analyze silicon in the bone 

marrow, the marrow from the tibia and the femur bone was collected using an 

insulin syringe with PBS. The marrow was spun down at 8000 rpm for 5 minutes 

to collect cells and particles. The pellet was dissolved in 100 !l RIPA and 

incubated at 55 ˚C for 24-36 hours in a shaker. The entire sample was analyzed 

on the ICP. Silicon was detected at four different wavelengths of 250.69, 251.43, 

251.61, and 288.158 nm and Scandium (1 ppm) was used as an internal control 

for normalization. All results were expressed as percent of injected dose or 

percent Si per gram of tissue. 

 

2.15 Statistical analysis 

 Numerical data were expressed as means ± standard error. Statistical 

differences between the means for the different groups were evaluated with 

Microsoft Office Excel using either the Student’s T-test or analysis of variance 

(ANOVA), with the level of significance at p < 0.05. 
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Chapter 3. Experimental Results 

3.1.  Properties of MSV 

3.1.1 Physico-chemical properties of MSV 

 Our group has successfully fabricated porous silicon multistage particles 

(MSV) with different size and shapes using a combination of standard 

electrochemical etching and photolithographic techniques as summarized in the 

schematic (Fig. 13). Since the focus of this study is vasculature targeting of 

MSV, quasi-hemispherical shaped MSVs were fabricated based on the rational 

design to enhance interaction with the vasculature as described in detail in the 

introduction. 

 MSVs used in this study were first characterized by different techniques. 

Scanning electron micrograph (SEM) images showed that the average diameter 

of quasi-hemispherical MSV was 1.6 ± 0.1 !m with pore size of 30 nm (Fig. 14A-

D). Reproducibility of the geometry of MSV was verified by size distribution 

analysis using a multisizer (Fig. 15) and all the counting and sizing of MSVs for 

subsequent experiments was carried out using the multisizer. 
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Figure 13. Schematic outline of the fabrication protocol for MSV. 

Combination of photolithography based microfabrication and electrochemical 

etching. (A) A silicon substrate masked with silicon nitride is patterned through 

photolithography; (B) pattern is transferred and trenches are formed in the 

silicon by reactive ion etch; (C) the electrochemical etching results in selective 

porosifiication, and (D) the particles are released from the substrate by 

sonication. 

Reproduced by permission from Biochimica et biophysica acta, Serda, et al, 

2010 (98). Copyright Elsevier 2010. 
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Figure 14. SEM images of porous MSVs with different magnifications. (A) 

Image of a collection of MSVs; (B) Single MSV; (C) Cross-section of a MSV; (D) 

Close-up view of the porous structure of a MSV.  
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Figure 15. Size distribution of MSVs. MSVs were re-suspended in IPA and the 

size was measured on a multisizer with three repetitive runs to analyze (A) mean 

diameter; and (B) volume equivalent of a spherical particle.  

 

 

 

A 

B 



www.manaraa.com

!
)(!

3.1.2 Biodistribution and biodegradation of MSV 

 To examine the biodistribution of MSV, the mice were injected with MSV 

intravenously, and the major organs including liver, kidney, spleen, lung, and 

heart were harvested 5 hours after the injection. Silicon content analysis 

demonstrated that MSV primarily accumulated in the liver (48 %) and spleen (17 

% of total injected dose), and there was minimal MSV accumulation in the 

kidney, lung, heart and the born marrow (Fig. 16). However, based on our 

microscopic analysis, there was no evidence of embolization of MSV in the 

capillaries. 

 After analyzing the bio-distribution of intravenously injected MSVs, the 

next step was to examine in vivo biodegradation of MSVs in the liver and spleen. 

For this the silicon content in these organs was measured at different time 

points. Silicon content in the spleen reduced by 80 % in the first two weeks and 

cleared by the third week (Fig. 17).  In contrast, only 55 % of MSV was cleared 

from the liver in the first two weeks, and approximately 25 % of the injected MSV 

remained in the liver 3 weeks after injection (Fig. 18), suggesting that MSV 

degradation kinetics are different in each organ.  SEM images of the MSV 

showed enlargement of pore size at day 7 and reduction of overall size by day 

14 (Fig. 18).  Collectively, these data suggest that the MSV can serve as 

reservoir to protect its payload from degradation, and release them over time by 

a mechanism that combines degradation of the carrier material, and hindered 

diffusion through the nanoporous structure.  

 

 

C 
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Figure 16. Biodistribution of MSV. Silicon content analysis of organs isolated 

from mice (n = 6) following i.v. injection of MSV. The major organs including 

heart, lung, liver, kidney, and spleen were harvested 4 h after the i.v. injection. 

Silicon amount was measured by inductively coupled plasma atomic emission 

spectroscopy and expressed as % of injected dose per organ (% ID). n.d., not 

detected. 
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Figure 17. Biodegradation of MSV.  (A) Silicon contents in the liver and (B) 

spleen after i.v. injection of MSV at different time points. Silicon amounts were 

expressed as % of injected dose per organs (% ID).  

Reproduced with permission from Cancer Research, Tanaka et al, 2010, (96). 

Copyright American Association of Cancer Research 2010. 
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Figure 18. In vivo degradation of MSVs. SEM image of MSVs isolated from 

the liver and spleen after 7 and 15 days of injection. (Original magnification= x 

50000).   

Reproduced with permission from Cancer Research, Tanaka et al, 2010, (96). 

Copyright American Association of Cancer Research 2010. 
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3.1.3 Sustained delivery of siRNA contained in MSV 

 Based on the unique biodistribution and sustained biodegradation 

properties in vivo, we next tested if a payload incorporated into the MSV could 

be released for a sustained period of time. For a proof of principle we tested 

siRNA delivery to achieve sustained gene silencing. For this we first 

demonstrated siRNA encapsulated into nanoliposomes could be incorporated 

into the MSV. Fluorescently labeled siRNA with Alexa 555 were encapsulated 

into nanoliposomes and loaded into the silicon particles (Fig. 19). The image 

demonstrated that nanoliposomes containing fluorescently labeled siRNA were 

effectively incorporated into the porous particles and intensive fluorescence was 

observed in the majority of the particles as seen in Figure 19. 

 

 

Figure 19.  Liposome loading into MSVs. Fluorescent (A) and phase (B) view 

of siRNA encapsulating liposomes incorporated into MSVs 
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To highlight the feasibility of the multistage delivery system, nanoliposomes were 

effectively incorporated into the MSVs (with 1.6 !m diameter, 60 % porosity, and 

40 nm pore size) and for proof of concept the delivery of a liposome 

encapsulating siRNA for the sustained silencing of the gene was tested. The 

gene selected for this study was EphA2 an oncogenic tyrosine kinase receptor 

overexpressed in ovarian cancer (97).  

 To test this delivery, mice bearing orthotopic tumors derived from 

SKOV-3 cells (15 days after intraperitoneal inoculation of tumor cells) were 

injected with 3 x 107 MSVs loaded with nanoliposome/EphA2-siRNA (15 !g of 

siRNA: triple dose). As a comparison, EphA2 siRNA encapsulated liposomes (5 

!g of siRNA) were injected twice weekly as per a previously published study 

(97). Tumors were harvested at 3, 7, 14, and 21 days and EphA2 expression 

was analyzed by immunohistochemistry (Fig. 20). EphA2 expression was 

downregulated until 21 days (96). Moreover, the biological effect of sustained 

downregulation of EphA2 was determined by assessing the microvessel density 

(CD31) and cell proliferation (Ki67) (Fig. 21). Both microvessel density (a and c) 

and cell proliferation (b and d) were significantly reduced in tumor when treated 

with a single administration of the MSV-loaded with EphA2 siRNA encapsulated 

liposomes **P<0.001 (Fig. 21). Similar effect by EphA2 siRNA encapsulated 

liposomes alone was achieved by three times the siRNA dosage (twice a week 

injections). 
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Figure 20. Systemic delivery of EphA2-siRNA using MSV. Mice (n=3 per time 

point) bearing SKOV3ip1 orthotopic ovarian tumors were injected with MSV-

EphA2-siRNA or left nontreated. Immunohistochemical analysis of EphA2 

expression in the SKOV-3 tumor. Images were taken at original magnification of 

"400. 

Reproduced with permission from  Cancer Research, Tanaka et al, 2010, (96). 

Copyright American Association of Cancer Research 2010. 
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Figure 21. Effect of sustained siRNA delivery on angiogenesis and cell 

proliferation. Tumors from animals with the SKOV3ip1 ovarian tumor were 

examined for (A) microvessel density (CD31) and (B) cell proliferation (Ki67). 

Representative sections from each treatment group are shown (final 

magnification= x100 for CD31 and x400 for Ki67), with mean number of vessels 

per field or mean % of proliferative cells, summarized in the graph at the bottom 

(C-D). Five different fields per slides at least three individual tumors per 

treatment group were examined.  

Cont si – control siRNA, EphA2 si – siRNA against EphA2, L - liposome. 

Reproduced with permission from Cancer Research, Tanaka et al, 2010, (96). 

Copyright American Association of Cancer Research 2010. 
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3.1.4 Biocompatibility of MSV loaded EphA2-siRNA  

 We next tested the biocompatibility of multistage delivery system following 

i.v. administration of therapeutic dose of MSV-EphA2-siRNA. The cytokine levels 

in the plasma were analyzed after 5 hours post injection. Cytokine levels in the 

mice injected with MSV-EphA2-siRNA were similar to other controls (Fig. 22). 

Interestingly, liposome injection alone (both L-control siRNA and L-EphA2 

siRNA) resulted in elevation in GM-CSF levels, which did not occur for MSV-

EphA2-siRNA injection. These data indicate that MSV-loaded liposomal siRNA 

induced no significant levels of inflammatory cytokines and on the contrary 

reduced liposome-mediated inflammatory response. 
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Figure 22. Cytokine analysis of MSV loaded liposome-siRNA. Following i.v. 

injection of MSV-EphA2-siRNA into FBV/N mice (n=4), the serum was collected 

5 hours after injection and the plasma was analyzed for different inflammatory 

cytokines. Data represented as picograms/ml of plasma. 
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3.2. Identification of E-selectin thioaptamer 

3.2.1 Synthesis of thioaptamer library 

 A single-stranded library consisting of ~1014 different sequences was 

chemically synthesized from a 73-mer DNA template containing a 30-nucleotide 

random region flanked by 21-mer and 23-mer polymerase chain reaction (PCR) 

primer regions.  

 

  5’ Primer   –    N30   –    Primer 3’          (1014 sequences) 

 

 The library was PCR amplified using a mixture of dATP, dTTP, dCTP, and 

dGTP and biotinylated forward primer to obtain a thio-substituted library. The 

resulting PCR products contained monothio-phosphate substitutions (in the Sp 

configuration) on the 5’ side of every dA residue with the exception of the primer 

region on the non-template strand. These double stranded PCR products were 

then incubated with streptavidin-coated beads to separate the unbiotinylated 

single strand from the double stranded DNA. The combinatorial library was next 

used to screen for a thioaptamer ligands against E-selectin.  

 For the identification of E-selectin thioaptamer, a two-step selection 

strategy comprising of a recombinant protein-based screening followed by a cell-

based selection was employed. 
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3.2.2 Screening with recombinant E-selectin protein 

 The TA that binds to E-selectin recombinant protein was screened from 

the TA library using a solution-based filter binding method. The recombinant 

human E-selectin protein was incubated with TA library and filtered through the 

nitrocellulose membrane to remove unbound TAs. The TA-E-selectin complex 

retained on the filter membrane was eluted and used as the template for PCR 

amplification. This selection cycle was repeated for a total of 10 times and the 

stringency of the selection was elevated gradually at each iterative cycle by 

decreasing the amount of E-selectin protein and incubation time (Fig. 24). The 

TA libraries obtained after round 5 and 10 were PCR amplified and subcloned 

into plasmid vector for DNA sequences. After 10 iterative cycles a total of 35 TAs 

were isolated and sequenced. Based on their primary sequences, the TAs were 

aligned using ClustalW algorithm (Fig. 24) and a cladogram tree was generated 

in which the 35 sequences were grouped into 14 families (Fig. 25). Based on the 

lowest predicted free energy of the secondary structures of the TAs, one TA 

from each family was selected and common sequence motifs were identified 

(Fig. 26). These 14 TAs were amplified by PCR with Cy-3 labeled reverse primer 

for the second step of cell-based selection to identify the TA sequences that 

specifically bind to E-selectin on the surface of endothelial cells. 
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Figure 23. Schematic representation of the iterative process to screen 

thioaptamers. The process is based on the SELEX process where the TA 

library is incubated with the target protein. The bound DNA is enriched after 

repeated washing steps and amplified by PCR reaction. The cycle is iteratively 

repeated several times to isolate high binders to target protein. 
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Figure 24. ClustalW alignment of the selected sequences after 10th round. 

After the 10th round of selection, 35 clones were selected and their sequences 

were identified. The PCR primer regions in the sequences are underlined.   

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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Figure 25. Cladogram of the selected sequences after round 10. The 

sequences from 10th round of selection was aligned by ClustalW. Based on the 

Phylogeny of the sequences they were grouped into 14 different families.  

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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Figure 26. Common sequence motifs among 14 TA candidates. (A) The 14 

sequences belonging to each family from the cladogram are aligned by ClustalW 

program. (B) Common sequence motifs identified among the 14 sequences. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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3.2.3. Cell-based TA screening 

 The second step in the screening was a cell-based selection of the 14 

TAs identified in the first step (81). To identify the TA sequences that bind to E-

selectin on the surface of endothelial cells, there were two strategies that were 

considered for achieving over expression of E-selectin on the surface of 

endothelial cells 

1. Induction of cells with cytokines like TNF-!, IL-1" (69, 99) 

2. Development of an inducible system of cells to precisely control 

expression of E-selectin  

 

 The limitation of induction of E-selectin by cytokines is that firstly, it results 

in non-uniform stimulation of E-selectin in cells and secondly, it also causes 

upregulation of multiple surface molecules which can interfere in the screening 

of E-selectin specific thioaptamer ligands. For these reasons, a Tet-on inducible 

E-selectin endothelial cell line (ES-Endo) was developed (Fig. 27). 

  

3.2.3.1 Development of E-selectin inducible endothelial system 

A) Construction of E-selectin expression vector 

The following steps were carried out for the construction of E-selectin expression 

vector: 

• The cDNA of E-selectin was obtained and the E-selectin ORF was 

amplified by PCR and cloned into TOPO blunt vector.  

• Positive clones containing the gene were selected and sequenced and 

verified with Pubmed database (Accession NM_000450). The gene 
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sequence of E-selectin positive clone was 100% intact and no mutation 

was observed. 

• E-sel TOPO pBlunt was digested with Mlu I and Sal I to obtain the E-

selectin gene for subsequent insertion into pTRE-Dsred expression vector 

(Fig. 27A) 

• A clone containing E-selectin-dsred was selected and verified to contain 

the construct by double digestion with above enzymes 

• The function of the pTRE-Tight-BI hE-selectin-RFP positive clone was 

confirmed by transient transfection of the plasmid into tet-on MDA-MB-

231 breast cancer cell line established previously (100), and the cells 

were treated with 1000ng of doxycycline overnight.   

• MDA-MB-231 cells expressed red fluorescence protein in response to 

1000ng doxycycline (Fig. 27B). This data supports that the isolated pTRE-

Tight-BI hE-selectin-RFP positive clone was functional.  
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Figure 27. Construction of E-selectin expression vector. (A) Plasmid map of 

pTRE-Tight-BI human E-selectin-RFP. (B) transient transfection of pTRE-Tight-

BI human E-selectin-RFP plasmid in Tet-on MDA-MB-231 cells. (C) Mechanism 

of Tet-on inducible system. 
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B) Development of Tet-on endothelial cells 

 Two immortalized human endothelial cell lines were tested (HMVEC and 

HMEC) for developing an E-selectin inducible cell line. Human microvasculature 

endothelial cell line (HMVEC) was previously immortalized by stable transfection 

of telomerase reverse transcriptase (TERT) gene (101) and the human dermal 

microvasculature endothelial cell line (HMEC) was immortalized by SV-40 (102).  

 First, immunofluorescence was performed to test the basal expression 

level of E-selectin in these human endothelial cell lines. Both HMVEC and 

HMEC were incubated in the presence of 10 !g of TNF-! for 5 hours to induce 

E-selectin expression. After brief fixation, the cells were stained with antibody 

against E-selectin. E-selectin expression was rapidly induced by pro-

inflammatory cytokine (TNF-!) in both HMVEC and HMEC cells (Fig. 28). 

However, the baseline E-selectin expression level for HMVEC cells was minimal, 

and the induction of E-selectin expression was very scattered and was only seen 

in a total of 20-30 % of the cells (Fig. 28). This data suggests that E-selectin 

induction by cytokine through NF-#" may require additional cellular mechanisms. 

In contrast, HMEC cells responded to TNF-! induction more sensitively and 

evenly, however, the basal E-selectin expression level was higher than HMVEC. 

HMVEC cells with much lower baseline expression of E-selectin than HMEC 

were selected for development of E-selectin inducible system.  
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Figure 28.  Immunofluorescencne of E-selectin in two endothelial cell lines 

(HMEC and HMVEC). Cells were induced with TNF (10 ng/ml) for 5 hours and 

fixed and stained for E-selectin expression. Green - E-selectin and Blue - 

Hoechst 33342. 
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 Next, HMVEC were stably transfected with an rtTA plasmid and the 

positive clones were screened. To confirm the expression and function of the 

rtTA protein, the clones were infected with 50 MOI of adenoviral TRE-#-

galactosidase with 1000 ng of doxycycline treatment. The #-galactosidase 

activity in the clones was measured using ONPG as the substrate. Clone 32 

showed the highest activity (Fig. 29A). To further confirm the expression of rtTA, 

western blotting was performed using antibody against rtTA and clone 32 

showed the highest rtTA expression level (Fig. 29B). As a second step of the 

cloning, the clone 32 was co-transfected with pTRE-Tight-BI-human E-selectin-

RFP and the stable clone was isolated after two weeks. The stable clone 

expressed the RFP after treatment with doxycyline as visualized by fluorescent 

microscopy (Fig. 29C). 

 

 To examine the ability to induce E-selectin overexpression in the stable 

HMVEC clone of Tet-on inducible bi-directional RFP/E-selectin, the cells were 

incubated with 1000 ng of doxycycline for 5 hours and E-selectin expression was 

determined by immunofluorescence and western blotting (Fig. 30). E-selectin 

was expressed on the surface of the cells in response to doxycycline, whereas 

no E-selectin expression was seen without treatment with doxycycline.  
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Figure 29. Development of tet-on E-selectin inducible endothelial cells. (A) 

Screening of tet-on positive cells. (B) Tet-on protein expression in HMVEC clone 

32.  (C) RFP expression in HMVEC clone 32 in response to doxycycline.   
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Figure 30. Doxycyline inducible E-selectin expression in ES-Endo.  (A) 

Immunofluorescence to analyze E-selectin expression in ES-Endo after 

induction with doxycycline 1000 ng/ml Green – E-selectin; Blue - Hoechst 33342. 

(B) Western blotting of E-selectin protein expression in the ES-Endo cells after 5 

hour induction with doxycycline. 
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3.2.3.2 TA selection using E-selectin inducible endothelial cells 

 To utilize the E-selectin inducible endothelial cells (ES-Endo) for the 

second step of TA selection, first the doxycycline dose dependent induction of E-

selectin expression was analyzed. For this induction in E-selectin expression on 

the plasma membrane was analyzed on ES-Endo incubated with increasing 

concentrations of doxycycline (0–2000 ng/ml) for 5 hours. As a reference for the 

physiological level of E-selectin expression, the cells were also treated with TNF-

! (10 ng/ml) for 5 hours. E-selectin expression was analyzed using 

immunofluorescent staining with anti-E-selectin antibody. When treated with 500 

ng/ml of doxycycline, upregulation of E-selectin expression was observed 

predominantly on the cell membrane, and the expression level increased in a 

doxycycline concentration dependent manner (Fig. 31). At doxycycline 

concentration of 2000 ng/ml, the level of E-selectin expression was the highest 

and equivalent to TNF-! treated cells therefore this concentration of doxycycline 

was used for all the subsequent experiments. Due to the leakiness of the 

inducible system, the baseline level of E-selectin expression was slightly higher 

than wild type cells in the absence of doxycycline.  

 Next step was to select out of the 14 TAs isolated in the first step, the TA 

that binds to E-selectin specifically. For this ES-Endo were pre-incubated with 

doxycycline and then with each of the 14 TAs (100 nM) were added for 20 

minutes at 37 °C. To analyze the binding and specificity of each TA, the 

fluorescent intensity associated with the cells was compared using fluorescent 

microscopy (Table 2).  

 Between the 14 TAs tested, TA-1 exhibited the highest binding, and this 

binding was doxycycline dose-dependent. The number and brightness of the 
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speckles increased proportionally to the doxycycline concentration up to 2000 

ng/ml (Fig. 31), suggesting E-selectin specific binding. Similar binding pattern of 

TA-1 was also observed with TNF-! induction of ES-Endo. Although all the TAs 

were isolated based on their ability to bind human recombinant E-selectin 

protein, the rest of the TAs showed weak doxycycline dependent with high 

background binding (TA 20, 31) (Table 2). Based on these results, TA-1 was 

selected as the top candidate for E-selectin thioaptamer 1 (ESTA-1) and further 

characterization studies of ESTA-1 were conducted. 
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Table 2. Comparison of TA binding to E-selectin expressing ES-Endo. The 

table shows the calculated lowest free energy using MFold algorithm for each 14 

TA sequences, their relative binding, and relative specificities to E-selectin 

expressing cells. The relative binding affinity was determined by the amount of 

fluorescence detected per field of view (final magnification 60x) in the cell based 

binding assay and the relative specificity was defined by the degree of 

doxycycline dose dependent effect on TA binding. + indicates the binding 

strength or specificity. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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Figure 31. E-selectin dependent binding of ESTA-1. ES-Endo cells were 

induced with different concentrations of doxycycline (0-2000 ng/ml) and 

analyzed for E-selectin expression and ESTA-1 binding. E- selectin 

overexpressing ES-Endo cells were incubated with Cy3-labeled ESTA-1 (100 

nM) for 20 minutes at 37 °C. TNF-! (10 ng/ml) induced ES-Endo was used as a 

positive control. Blue, Hoechst 33342; Red, Cy3-labeled ESTA-1; Green, E-

selectin. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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 We did two experiments to confirm that ESTA-1 binding on the ES-Endo 

cells was E-selectin specific. Firstly, we treated ES-Endo with different 

concentrations of E-selectin monoclonal antibody followed by incubation with 

100 nM of ESTA-1. Pre-treatment and co-incubation with E-selectin antibody 

caused a significant reduction of ESTA-1 binding to ES-Endo as confirmed by 

the disappearance of the speckle pattern (Fig. 32). In contrast, there was no 

affect of normal IgG pre- treatment on ESTA-1 binding to the cells (Fig. 32). This 

data confirms that E-selectin antibody shares the binding site with ESTA-1 on 

the E-selectin protein. 

 Secondly, immunofluorescence of E-selectin was performed on induced 

ES-Endo that were incubated with ESTA-1. For this a different monoclonal 

antibody against E-selectin was used that does not compete with ESTA-1 

binding. Partial colocalization of ESTA-1 (red fluorescence) with E-selectin 

(green fluorescence) was observed on the edge of the cells as seen in yellow 

merge, supporting ESTA-1 binding to E- selectin on the cell surface (Fig. 33). 

One of the possible reasons for only a partial colocalization of ESTA-1 and E-

selectin can be the intracellular uptake of ESTA-1 following the initial cell surface 

binding. In fact, it is well documented that E-selectin undergoes recycle phase 

and is internalized to the intracellular organelles (endosomes and lysosomes) 

[34]. Confocal microscopy suggested that ESTA-1 maybe internalized as 

evidenced by appearance of speckles at different heights (Fig. 33B). These data 

confirmed that ESTA-1 binds to E-selectin protein.  
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Figure 32. Competitive E-selectin binding of ESTA-1 and E-selectin 

antibody. Blocking of ESTA-1 binding by E-selectin antibody. ES-Endo were 

pre-incubated (top panel) or co-incubated (bottom panel) with 25 mg of E-

selectin antibody for 2 hours and incubated with 100 nM of ESTA-1 for 20 

minutes. Unbound ESTAs were washed away and slides were prepared for 

fluorescent imaging to visualize the binding to ES-Endo cells. Blue, Hoechst 

33342; Red, Cy3-labeled ESTA-1; Green, E-selectin. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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Figure 33. Colocalization of E-selectin expression and ESTA-1 binding. (A) 

ES-Endo cells were treated with doxycycline (2000 ng/ml) and analyzed for 

ESTA-1 binding and E-selectin expression using immunofluoroscence. Blue, 

Hoechst 33342; Red, Cy3-labeled ESTA-1; Green, E-selectin. (B) Confocal 

image of ESTA-1 binding to doxycycline induced ES-Endo cells. Red, Cy3-

labeled ESTA-1; Green, Cytox nuclear staining. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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3.2.4 Characterization of ESTA-1 

 Next, ESTA-1 primary sequence was analyzed (Figure 34A). Based on 

our analysis this sequence did not show any homology to the existing genes in 

the NCBI database. The predicted secondary structure of ESTA-1 was 

determined using the MFOLD computer simulation program (103). Based on 

MFOLD prediction, the structure of the ESTA-1 comprised of two stable hairpin 

loops with an estimated free-energy change of folding of -10.72 kcal/mol (Fig. 

34B). Preliminary deletion studies of the stem loops suggest that these loops 

played an important role in binding to the E-selectin protein.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

!
,,!

Figure 34. ESTA-1 sequence and the MFOLD predicted secondary 

structure. (A) ESTA-1 DNA sequence. All of the deoxy adenosine (dA) residues 

are modified monothio substituted with Rp configuration, with the exception of 5’-

primer binding region in the sequence. (B) MFOLD predicted secondary 

structure of ESTA-1.  

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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3.2.5 Evaluation of binding affinity of ESTA-1 to E-selectin  

 The binding affinity of ESTA-1 with all selectins was determined using 

electrophoretic mobility shift assay (EMSA). In this experiment, fixed amounts of 

ESTA-1 (4.6 pmoles) was mixed with increasing amounts (up to 22 pmoles) of 

recombinant proteins (E-, P-, L-selectin) to form a DNA/protein complex. The 

amount of ESTA-1/E-selectin protein complex formation was analyzed using 

EMSA. This complex increased when higher amount of recombinant E-selectin 

was added to the reaction with a corresponding decrease in the free (unbound) 

ESTA-1. Notably the amount of this complex reached saturation when the molar 

ratio of ESTA-1/E-selectin was 1:1. Based on the densitometric analysis of the 

unbound ESTA-1, the KD for ESTA-1 binding to E-selectin was estimated to be 

47 nM (Fig. 35A). Contrary to this, the binding of ESTA-1 to P-selectin showed 

very low affinity (estimated KD= 13 !M) under the same conditions and there was 

no detectable binding to L-selectin (Fig. 35B).  

 The nanomolar range of binding affinity of ESTA-1 for E-selectin on the 

endothelial cells was further confirmed under biological conditions, by incubating 

different concentrations of ESTA-1 (50 nM - 200 nM) with ES-Endo cells induced 

with doxycycline. A doxycycline dose dependent increase of ESTA-1 binding to 

the cells was observed that reached a maximum at 200 nM (Fig. 35C).  
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Figure 35. Evaluation of binding affinity of ESTA-1 to E-selectin. ESTA-1 

(4.6 pmoles) and recombinant human E-selectin protein (up to 19 pmoles) were 

incubated and subjected to electrophoresis at 4 °C. The gels were stained with 

SYBR Gold nucleic acid stain and densitometric analysis of the unbound ESTA-

1 was plotted. (A) E-selectin recombinant protein. (B) P-selectin recombinant 

protein. (C) ESTA-1 concentration dependent binding to ES-Endo. ES-Endo 

were incubated with doxycycline (1000 ng/ml) for 5 hours and then with indicated 

concentrations of Cy3-labeled ESTA-1 for 20 minutes. ESTA-1 binding was 

analyzed by fluorescent imaging. Red, Cy3-labeled ESTA-1; blue, Hoechst 

33342. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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3.2.6 ESTA-1 binding to vascular E-selectin in vivo 

 Next step was to deztermine if ESTA-1 binds E-selectin in vivo. As 

mentioned earlier, E-selectin is constitutively expressed on bone marrow 

endothelium and in the normal organs; E-selectin is upregulated in the presence 

of inflammatory stimuli such as in the case of cancer. So prior to examining the 

ESTA-1 binding to these sites we first examined the E-selectin expression at 

these sites.  

 Firstly, bone marrow was isolated and immunohistochemical analysis was 

performed on paraffin-embedded sections that confirmed high constitutive E-

selectin expression (Fig. 36A). These results are consistent with earlier 

published studies. Next, ESTA binding to E-selectin on the bone marrow 

endothelium was examined. ESTA-1 labeled with Cy-3 dye was intravenously 

injected into mice and the bone marrow was isolated and analyzed by a 

fluorescent microscope. A significantly high accumulation of ESTA-1 was 

observed in the bone marrow tissue (Fig. 36B). ESTA-1 accumulation in other 

organs was minimal.  

 Similarly, a 4T1 breast tumor mouse model immunohistochemistry was 

performed to determine E-selectin expression. 4T1 tumor is characteristic for the 

presence of infiltrating leukocytes and macrophages. A high E-selectin 

expression was observed on the endothelial cells of the tumor-associated 

vasculature (Fig. 37A). Next, Cy-3 labeled ESTA-1 was intravenously injected 

into 4T1 mouse model, and the tumor was analyzed for ESTA-1 binding. ESTA-1 

binding to the tumor vasculature was observed as evidenced by the speckled 

and punctate red pattern (Fig. 37B). No significant binding of ESTA-1 was 

observed in other organs including liver, spleen, kidney, lung, and heart. To 
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confirm that this was E-selectin specific binding, a pre-injection of E-selectin 

monoclonal antibody significantly reduced the ESTA-1 binding. Pre-injection of 

control IgG did not cause any inhibition in ESTA-1 binding.  
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Figure 36. In vivo binding of ESTA-1 to bone marrow vasculature. (A) 

Immunohistochemical analysis of paraffin embedded sections to analyze E-

selectin expression on the vasculature of bone marrow. (B) In vivo binding of 

ESTA-1 to bone marrow vasculature. Bone marrow was isolated from the 

animals (n=3) and analyzed under a fluorescent microscope. Red, Cy3-labeled 

ESTA-1; blue, Hoechst 33342. 
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Figure 37. In vivo binding of ESTA-1 to tumor vasculature. Sections derived 

from 4T1 xenograft model were examined for E-selectin expression and ESTA-1 

binding. (A) Immunohistochemical analysis of paraffin embedded sections to 

analyze E-selectin expression on the vasculature of 4T1 xenograft. (B) ESTA-1 

binding to 4T1 tumor vasculature. ESTA-1 was injected to mice (n = 3) via tail 

vein and tumor was isolated and the frozen sections (5 mm) were prepared to 

assess distribution of ESTA-1. Red, Cy3-labeled ESTA-1; blue, Hoechst 33342. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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3.2.7 ESTA-1 binding to human tumor vasculature 

 Due to species differences in human and mouse selectin, ESTA-1 binding 

to the tumor vasculature using histological sections derived from human 

carcinomas was tested. Immunohistochemical analysis confirmed that 

approximately 70-80% of skin, ovarian and breast tumors showed positive E-

selectin expression on the vasculature (Fig. 38 A and C). The incubation of the 

frozen sections with ESTA-1 showed intense binding on the vessels in ovarian 

carcinomas as evidenced by the co-localization with CD31 (Fig. 38B). In 

contrast, ESTA-1 binding was not observed in normal vessels. Similarly, high 

ESTA-1 binding was also observed to the tumor-associated vasculature in skin 

and breast carcinomas (Fig. 38C). ESTA-1 binding was almost absent in the 

normal human tissues, including the adrenal, pancreas, brain, lung, temporal 

lobe, breast, cervix, heart, kidney, stomach, thyroid, liver, placenta, salivary 

gland, skeletal muscle, small intestine, spleen, and uterus. 
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Figure 38. ESTA-1 binding to the human tumor vasculature. Frozen sections 

derived from human ovarian carcinomas and normal ovaries were examined for 

E-selectin expression and ESTA-1 binding. (A) Immunohistochemical analysis 

for E-selectin expression on the vasculature of ovarian carcinoma. (B) ESTA-1 

binding to tumor vasculature of ovarian carcinoma. Green, CD31; Red, Cy3-

labeled ESTA-1; Blue, Hoechst 33342. (C) Correlation of ESTA-1 binding to the 

tumor vasculature and E-selectin expression in human carcinomas derived from 

breast, ovary, and skin. 

Reproduced with permission from PLoS ONE,  Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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3.2.8 Effect of ESTA-1 binding on cell adhesion  

 Since E-selectin plays a critical role in cell adhesion, we next tested if 

ESTA-1-binding to E-selectin mediated inhibition of cell adhesion to endothelial 

cells. For this study, adhesion of a sLex positive human promyelocytic cell line 

(HL-60) on ES-Endo was analyzed. On induction of ES-Endo with doxycycline 

the HL-60 cell adhesion to cells increased by 5-fold (Fig. 39A). HL-60 adhesion 

to ES-Endo pre-incubated with indicated concentration of ESTA-1 for 20 minutes 

was compared with untreated cells. Preincubation of ES-Endo with ESTA-1 (100 

nM) resulted in inhibition of HL-60 adhesion to induced ES-Endo by 80 % (Fig. 

39A) (p<0.01). The IC50 for the inhibition of this interaction was approximately 63 

nM. This data indicates that ESTA-1 interaction to E-selectin competes with 

binding of natural ligands such as sLex and therefore ESTA-1 can have a 

potential application as an antagonist of E-selectin mediated adhesion during 

inflammation. 

 

3.2.9 Effect of ESTA-1 on cell viability 

 Lastly, for in vivo applications of ESTA-1, the effect of ESTA-1 treatment 

on the cell viability of ES-Endo cells was tested. Cells were first stimulated with 

doxycycline and then incubated with increasing concentration of ESTA-1 (up to 

200 nM) for up to 48 hours. To test cell viability during this treatment, a MTT 

assay was performed. There was no reduction in cell viability at least up to 200 

nM of ESTA-1 for 48 hours incubation with ESTA-1 (Fig. 39B). Also this 

treatment did not cause any visible morphological changes associated with 

cytotoxicity in the cells. Therefore, ESTA is a biocompatible material and can be 
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tested for its in vivo applications. With this data, we next developed ESTA-1 

conjugated MSV to attempt targeted delivery to the bone marrow. 
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Figure 39. Effect of ESTA-1 binding on cell adhesion and cell viability. (A) 

ES-Endo were incubated with doxycycline (1000 ng/ml) for 5 hours followed by 

different concentrations of ESTA-1 (1 - 200 nM) for 30 minutes. HL-60 cells were 

incubated with ES-Endo and the adhesion of HL-60 cells was quantified. Error 

bars, mean ± SEM; *,P<0.05, **, P<0.01 vs. Dox+/ESTA-, Student’s t test. (B) 

ES-Endo were incubated with doxycycline (1000 ng/ml) for 5 hours followed by 

different concentrations of ESTA-1 (1 - 200 nM) for 30 minutes. The cells were 

washed and incubated with MTT for 4 hours, and the absorbance at 570 nm was 

measured. The data was normalized by untreated cells (without ESTA-1) as 

100%. . Error bars, mean ± SEM. 

Reproduced with permission from PLoS ONE, Mann et al, 2010, (96). Copyright 

Public Library of Science 2010. 
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3.3 Development of bone marrow targeted MSV 

3.3.1 Conjugation and characterization of ESTA-MSV 

 The MSVs fabricated as part of Aim 1 were functionalized by 3’-

aminopropyltriethoxysilane (APTES) to introduce amine groups on the surface to 

serve as a linker for conjugation with E-selectin thioaptamer molecule (ESTA). 

ESTA containing a 5’ carboxyl group was conjugated to the amino functionalized 

MSV as schematically represented in Fig. 40A. Initial confirmation of conjugation 

was done by visualizing the fluorescent ESTA-MSVs under a fluorescent 

microscope (Fig. 40B). 

 To validate the conjugation of ESTA to MSV, physico-chemical properties 

of ESTA-MSV were measured using three independent methods. Analysis of 

zeta potential showed that the surface charge of MSV changed from +6mV of 

amine modified MSV to -35 mV of ESTA-MSV. This change in the surface 

charge was attributed from the presence of DNA on the surface of MSV. To 

confirm the conjugation of ESTA to the MSV, the fluorescence of the Cy3-labled 

ESTA conjugated MSV was examined using flow cytometry. Following the 

conjugation of Cy3-ESTA, the mean fluorescent intensity of MSV increased 

approximately 100 times (from 101 to 10561 AU) (Fig. 41A). To determine the 

average amount of ESTA on the MSV, Cy-3 fluorescence was measured using a 

fluorimeter. A linear standard curve was generated from Cy-3 ESTA 

fluorescence and based on Cy-3 fluorescence from ESTA-MSV, it was 

calculated that approximately 106 ESTA molecules were conjugated to each 

MSV (Fig. 41B). Together, these data support ESTA conjugation to MSV.  
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 To further validate the conjugation, the infrared spectrum of ESTA-MSV 

was analyzed by Fourier transform infrared spectroscopy (FTIR). FTIR spectra 

of ESTA-MSV exhibited an appearance of two distinct peaks (1060 cm-1 and 

1651 cm-1) that corresponds to the phospho-linkage (P=O) in DNA and carboxyl 

(C=O) chains in the ESTA, respectively (Fig. 41C).  
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Figure 40. Conjugation of ESTA-1 to MSV. (A) Schematic of conjugation 

chemistry adopted for the conjugation of Cy3-COOH-ESTA to amine modified 

MSVs; (B) Fluorescent images of ESTA-MSV. Red – Cy-3 label on ESTA.  
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Figure 41. Physico-chemical characteristics of ESTA-MSV (A) Flow 

cytometry data of amine modified MSV (blue) and ESTA-MSV (red). (B) Linear 

standard curve of the change in fluorescence intensity corresponding to the 

number of ESTA-MSV. (C) FTIR spectra of MSV (red), ESTA (blue), ESTA-MSV 

(green). Arrows point to the stretching due to P=O and C=O linkages.  
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3.3.2 Serum stability of ESTA-MSV  

 For potential in vivo applications, the serum stability of ESTA-MSV was 

evaluated under physiological conditions. ESTA-MSV (106) was incubated in 

freshly isolated mouse serum at 37 ˚C up to 5 hours and three different 

parameters including MSV stability, ESTA-stability, and stability of ESTA 

conjugation on the MSV were analyzed.  

• The size distribution of ESTA-MSV remained unchanged after serum 

incubation as measured by dynamic light scattering, which indicated MSV 

stability in the serum.  

• Next, stability of ESTA was assessed by serum incubation up to 24 hours 

at 37 ˚C followed by gel electrophoresis of the DNA. ESTA-1 was stable 

upto 16 hours in the serum, which is consistent with earlier reports that 

the thio-substitution enhances serum stability (Fig. 42A).   

• Lastly, to confirm the serum stability of ESTA conjugation to MSV, 

intensity of Cy-3 fluorescence from ESTA-MSV was measured at different 

time points. There were no changes in the fluorescence intensity after the 

5-hour incubation of MSV in the serum (Fig. 42B). The 5 hour time point 

was chosen based on the fact that 5 hour is the optimum time required to 

achieve in vivo targeting of the MSVs. 

 We also observed that serum incubation of the negatively charged ESTA-

MSV caused a neutralization of the surface charge of the particles from -35mV 

to -15mV due to opsonization. These findings suggest that ESTA-MSV is stable 

for up to 5 hours under physiological conditions. 
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Figure 42: Stability of ESTA-MSV under physiological conditions. (A) Gel 

electrophoresis and densitometric analysis of ESTA-1 after serum incubation for 

indicated time points.  (B) Quantification of Cy3 fluorescence from ESTA-MSV 

after incubation in fetal bovine serum at 37 °C for indicated time points. 
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3.3.3 Adhesion of ESTA-MSV to E-selectin expressing endothelial cells  

 Using E-selectin inducible human microvascular endothelial cell line (ES-

Endo) (95), we next examined the specific interaction of ESTA-MSV to 

endothelial cells expressing E-selectin on the membrane. ES-Endo showed 

minimal basal expression of E-selectin and the expression was induced on 

treatment with doxycycline (Fig. 43). To test the E-selectin specific binding of 

ESTA-MSV, 104 ESTA-MSV was incubated with ES-Endo in the presence of 

doxycycline at 4 °C. The number of MSV adhesion to the endothelial cell surface 

was three-fold more than MSV alone or to untreated cells (Fig. 43). There was 

no significant difference in the number of MSV and ESTA-MSV that are attached 

on the endothelial cell surface when E-selectin expression was not induced.  
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Figure 43. E-selectin dependent ESTA-MSV adhesion to endothelial cells. 

ES-Endo cells were induced with doxycycline for 5 hours to induce E-selectin 

expression. The cells were then incubated with ESTA-MSV for 1 hour at 4° C 

and then washed and fixed in paraformaldehyde. The number of MSV was 

counted in five different fields of view using a microscope and plotted per region 

of interest (ROI). Error bars mean ± SEM. 
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3.3.4 Development of ESTA-MSV loaded with nanoparticles  

 Next, the ability of nanoparticle loading to the ESTA-MSV was tested 

using three different types of nanoparticles. First, loading of amino (PEG) 

quantum dots-655 of (mean diameter = 20 nm) showed a similar overlay pattern 

of green (Qdot) and red fluorescence (Cy-3 ESTA) (Fig. 44A top panel). 

Similarly, cationic DOPC liposomes containing Oregon green paclitaxel (size 

ranging from 25-35 nm) were loaded into the ESTA-MSV (96). The loading of 

liposomes was visualized by confocal microscopy by analyzing the overlay of 

green (liposomes) and red fluorescence (Cy-3 ESTA)(Fig. 44A bottom panel). 

The fluorescence measurements by flow cytometer verified a significant increase 

(approximately 100 fold) in red fluorescence after ESTA conjugation to MSV 

(ESTA-MSV) and green fluorescence after loading of with Q-dot 655 into ESTA-

MSV (Fig. 44B). Lastly, the loading of amine functionalized iron oxide 

nanoparticles (diameter =15 nm) was also confirmed by Prussian blue staining 

(Fig. 44C), and the iron content was quantified to 5 !g of Fe in 107 ESTA-MSV. 

These experiments demonstrated the ability of loading nanoparticles, which 

could either be a drug carrier (such as liposomes) or an imaging agent (Q-dot or 

FeO NPs), into the mesoporous structure of ESTA-MSV.  
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Figure 44. Nanoparticle loading into ESTA-MSV. (A) Qdot 655 were loaded 

into ESTA-MSV (top panel) Red, Cy-3 ESTA-MSV; Green, Qdot. Ptx 

encapsulating DOPC liposomes were loaded into ESTA-MSV (bottom panel) 

Red, Cy-3 ESTA-MSV; Green, Oregon green Ptx encapsulated liposomes. (B) 

Flow cytometry was carried out to analyze the fluorescence from the surface of 

MSV. Red fluorescence measured for ESTA-MSV after conjugation (top panel); 

green fluorescence measured for ESTA-MSV before and after loading with Qdot 

(bottom panel). (C) Iron oxide nanoparticles were loaded into ESTA-MSV and 

amount of iron loaded was measured using Prussian blue analysis. Error bars 

mean ± SEM. 
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3.3.5 BM targeting of ESTA-MSV  

 For bio-distribution studies of ESTA-MSV, the mice were intravenously 

injected with 5 x107 ESTA-MSV and all major organs including liver, spleen, 

heart, lung, bone marrow were harvested after 5 hours and the silicon content 

was analyzed using ICP-OES. The accumulation of ESTA-MSV in the bone 

marrow was 8 times higher as compared to un-conjugated MSV. The 

accumulation of ESTA-MSV in the bone corresponded to over 20 % of injected 

dose/g organ weight (P<0.04)(Fig. 45A). The non-targeted MSV exhibited 

minimum accumulation in the BM and primarily accumulated in the liver and 

spleen. Histological analysis also supported the presence of ESTA-MSV in the 

endothelial wall of the BM tissue (Fig. 45B).  

 Lastly, the delivery of MSV loaded with nanoliposomes containing Oregon 

green paclitaxel to the bone marrow was analyzed. Following intravenously 

injection, the fresh bone marrow was isolated and analyzed by fluorescent 

microscope. A significant accumulation of green fluorescence was observed in 

the BM when the liposome loaded ESTA-MSV was injected intravenously. In 

contrast, injection of non-targeted MSV loaded with equivalent amount of 

liposomes or with naked liposomal only showed minimal accumulation of green 

fluorescence in the BM (Fig. 45C).  
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Figure 45. In vivo distribution of ESTA-MSV in mice. ESTA-MSV was 

injected to mice via tail vein and were harvested 5 hours after the injection and 

analyzed for silicon content. (A) Biodistribution of ESTA-MSV represented as 

percentage of injected silicon per gram weight of organ. Error bars mean ± SEM. 

*P<0.04. (B) Paraffin sections of bone were prepared to visualize the localization 

of ESTA-MSV in the bone marrow. (C) ESTA- MSV containing paclitaxel 

liposomes were injected in mice and bone marrow tissue was isolated and 

stained with DAPI to assess distribution of liposomes. Green, Oregon green 

encapsulated liposome; blue, Hoechst 33342. 
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Chapter 4. Discussion 

 Bone marrow is a highly heterogeneous organ performing a critical 

function of hematopoieisis and comprising of a wide variety of cell types. Multiple 

diseases that originate or involve this organ are associated with a specific cell 

type in the BM. Due to this complexity of BM composition and the presence of 

healthy hematopoietic progenitor cells, conventional forms of treatment options 

are not efficient. Therefore, non-conventional forms of drug delivery are urgently 

needed to efficiently deliver therapeutics to the diseased cell type in the bone 

marrow 

 To achieve this goal we proposed a strategy to actively target 

therapeutics through targeting of a drug carrier to the bone marrow. For 

successfully targeting a drug carrier to a specific site in the body we first 

identified three prerequisites.  

1. A unique biological target specific to site of delivery 

2. A high-affinity ligand against the target molecule 

3. An optimally designed drug delivery carrier 

 In our study we focused on active vascular targeting to achieve an 

efficient method of drug delivery. E-selectin a cell adhesion molecule on 

endothelial cells was selected as the biological target for active targeting due to 

its constitutive expression on BM endothelium and that E-selectin expressed on 

the luminal surface of vascular endothelium is readily accessible to systemically 

injected drug carriers. 
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 For targeting E-selectin, although various ligands have been developed 

and used for active targeting of nanoparticles to E-selectin expressing cells [4,5], 

the usage of these ligands remains a challenge due to low affinity and lack of 

serum stability. For example, E-selectin peptide is an L-amino acid peptide that 

suffers from bioavailability and stability issues for clinical applications [6]. In fact, 

we conducted targeting experiments with MSVs conjugated with high affinity E-

selectin peptide and observed that the serum stability of the peptide 

compromised the in vivo targeting efficacy. For other ligands such as antibodies, 

difficulty in controlling the orientation during chemical conjugation posed a 

limitation for targeted delivery. Lastly, due to the structural homology between 

different members of the selectin cell adhesion family, isolation of E-selectin 

specific selectin ligands has remained elusive. In fact, most of the carbohydrate 

mimetic ligands identified for E-selectin exhibit considerable cross reactivity 

against other selectins (L- and P- selectin) [7], limiting their use of such for 

targeted delivery due to possible off targeting effects. These limitations prompted 

me to identify a novel thioaptamer ligand against E-selectin. 

 Aptamer screening typically consists of binding reactions of combinatorial 

libraries with recombinant protein (25-28). However, mammalian proteins 

undergo structural differences associated with post-translational modifications, 

which cannot be completely mimicked by recombinant proteins. Therefore, 

screening with protein alone can lead to identification of aptamers that would not 

maintain their binding capabilities to the target protein in a physiological 

environment such as in the cells. Hence, the integration of biologically relevant 

conditions during the aptamer screening process is crucial for identifying 

aptamers that maintain binding under physiologically conditions. Therefore, for 
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the identification of E-selectin specific thioaptamer, we utilized a two-step 

selection strategy. The first screening step involved screening the combinatorial 

library using human E-selectin recombinant protein. Ten iterative cycles of 

binding and enrichment of thioaptamers bound to E-selectin protein led to the 

identification of 14 TA sequences (Fig. 24). The second step was the cell-based 

selection of these 14 candidates using an E-selectin inducible endothelial cells. 

Commonly used approaches including induction by cytokines such as TNF-!, IL-

1" were not employed in this step as they result in induction of a wide variety of 

surface molecules and it would be difficult to rule out the involvement of these 

other cell surface molecules during the E-selectin specific screening of 

thioaptamers. Therefore, we developed a doxycycline inducible E-selectin 

expression endothelial cell line for a controllable and highly selective induction of 

E-selectin expression. In the cell-based selection, only one of the 14 selected 

TA’s exhibited highly doxycycline-dependent binding to endothelial cell 

expressing E-selectin (Table 2). This was surprising because the initial TA 

screening was conducted using human recombinant E-selectin protein isolated 

from the mammalian system. This points out the fact that the first step of 

screening of TA’s from the combinatorial library yielded ligands of relatively high 

affinity, but low specificity (less doxycycline-dependent binding) to the E-selectin 

expressing cells.  

 Most mammalian proteins undergo structural changes associated with 

post-translational modifications, which cannot be completely mimicked by 

recombinant proteins. Therefore, in vitro ligand selection with pure biochemical 

entities (e.g., recombinant protein) may not mimic effective ligand binding in a 



www.manaraa.com

!
%&'!

complex biological environment, particularly if the target protein is significantly 

post-translationally modified such as in the case of E-selectin. E-selectin protein 

undergoes sequential post-translational modification and is matured from 51 kDa 

to 115 kDa. Thus, the integration of 2nd step of biologically selection in the 

screening process is essential for the identification of highly specific and high 

affinity ligands. Overall, the two-step screening strategy allowed us to identify a 

novel E-selectin thioaptamer (ESTA-1) that specifically binds to E-selectin 

expressing on the endothelial cell surface (Fig. 31). Our data demonstrated that 

mono-thiophosphate substitution in ESTA-1 resulted in high affinity binding to E-

selectin (47 nM) (Fig. 35). This is a significant improvement of 2,000-40,000 

times higher affinity as compared to the natural ligand sLex (KD= 100–2000 mM) 

(13). Also the sulfur substitution of the phosphate oxygens on the DNA 

backbone in ESTA offers enhanced serum stability. Moreover, dithio-substituted 

DNA has been shown to increase the binding affinity of non-thioated or monothio 

analogue by 100–600 times [30]. This suggests that dithio-substitution of ESTA-

1 can lead to further development of higher affinity of ligands against E-selectin. 

Additionally, we demonstrated that the ESTA-1 binds E-selectin with negligible 

cross reactivity to L- and P-selectin (!M). Minimal cross reactivity of ESTA-1 

further highlights the potential utility of ESTA-1 for highly selective E-selectin 

targeted therapeutic and imaging applications. Lastly, we tested ESTA-1 binding 

to E-selectin expressing vessels in both human carcinoma pathology samples 

and animal models to ensure that ESTA-1 bound E-selectin independent of 

species differences. We believe that sequence and structural homology between 

human and mouse E-selectin [8] resulted in species independent binding of 

ESTA-1 to E-selectin. In addition, ESTA-1 is stable under physiological 
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conditions for up to 16 hours (Fig. 42). This fact makes ESTA-1 extremely useful 

for pre-clinical validation and for possible clinical applications. Furthermore, 

ESTA-1 effectively inhibited the E-selectin dependent adhesion of leukocytes on 

endothelial cells (Fig. 39). Therefore, ESTA-1 can also be utilized as an 

antagonist to block the E-selectin dependent leukocyte recruitment cascade 

during chronic inflammation.  

 One of the foremost applications of ESTA-1 is for targeted delivery of 

drug carriers to E-selectin as described in this study.  We utilized the multistage 

drug delivery strategy, which has been developed by our group. This strategy is 

based on circumnavigating biological barriers present in the body by 

incorporating multiple stages thereby maximizing site-specific localization and 

release of therapeutics therein. The first stage comprises of porous silicon 

microparticles as drug carriers and involves encapsulating drug-containing 

nanoparticles within MSVs that protect and ferry these nanoparticles until they 

recognize and dock at their target site on the vasculature. Using an integrated 

approach combining in silico mathematical modeling with in vitro and in vivo 

experiments, MSVs were rationally designed with a hemispherical geometry to 

maximize localization and adhesion to vasculature, whilst minimizing RES 

uptake [9]/!Porous silicon was chosen because it is highly biodegradable into 

harmless silicic acid byproducts under physiological conditions, presenting fewer 

challenges for long-term use and has received FDA approval. The degradation 

kinetics of MSVs is dependent on the pore characteristics, which can be tailored 

during their fabrication. Since the release of nanoparticle payload is dependent 

on the degradation of MSV, the release can be tightly regulated. One of the 

applications of MSV can be to function as intravascular depots, whereby MSVs 
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are fabricated to undergo slow degradation leading to a sustained release of 

therapeutic payload. This property was successfully demonstrated for the 

sustained delivery of siRNA-encapsulated liposomes incorporated into the MSV 

to achieve sustained gene silencing in ovarian tumors. The silencing of Epha2 

gene in ovarian tumor by a single intravenous injection of MSV loaded with 

Epha2 siRNA liposomes lasted three weeks, which was comparable to six 

repeated injections of siRNA liposomes alone (Fig. 20). In addition, our data 

indicated that MSV-loaded liposomal siRNA reduced the induction of 

inflammatory cytokines as associated with liposomes alone (Fig. 22). This 

silencing led to significant tumor shrinkage and therapeutic efficacy in animals 

bearing ovarian xenografts (96).    

 The fact that BM exhibits unique vascular characteristics, for instance the 

average hydrodynamic shear rate in the BM microvessels being lower than in 

other organs [10], higher margination and subsequent adhesion to the vessel 

wall is expected. This vessel binding can be further enhanced by the presence of 

high affinity targeting ligands [11]. Porous silicon offers ease of surface 

modifications for chemical conjugation of targeting ligands. ESTA-1 was 

conjugated to MSV and confirmed by multiple techniques. ESTA-MSV showed 

higher adhesion to E-selectin positive endothelial cells in vitro and in vivo. ESTA-

MSV showed enhanced localization in the BM tissue (20 % injected dose/g 

organ) and significantly enhanced delivery of therapeutic liposomes incorporate 

in the porous structure of MSVs (Fig. 45). Comparing these results with an 

earlier study by Tari et al, we estimated that 200 times more liposomes could be 

delivered to the BM tissue carried by the ESTA-MSV as compared to an injection 

of equivalent amount of liposome alone [12]. The targeting experiments in this 



www.manaraa.com

!
%&*!

study have been conducted in disease free animals, and as mentioned earlier 

certain pathological and physiological stimuli can cause changes in the vascular 

characteristics of BM. Therefore it still remains to be evaluated how such 

changes would affect the MSV targeting to the BM vasculature. 

 One of the unique advantages of MSV is the flexible choice of payload 

such as lipid-based carriers, metal nanoparticles or drug alone that can be 

loaded into the porous MSVs. As a proof of concept, we demonstrated three 

types of nanoparticles loaded into the porous structure of ESTA-MSV (Fig. 44). 

Based on our calculations, 7x104 iron oxide nanoparticles (with a 15 nm 

diameter) were incorporated into the pores of a single ESTA-MSV (1.6 µm 

diameter, 60 % porosity). As described by a recent study from our group, the 

geometrical confinement of iron oxide nanoparticles in the MSV can lead to 

enhancement of contrast for imaging applications (104). Therefore, delivery of 

MSV loaded with such iron oxide nanoparticles can have imaging applications.  

 The advantage afforded by this multistage approach for drug delivery are 

easily appreciable, and lie in its multi-functionality and its ability to favorably alter 

the pharmacokinetics of drugs. A combination of two biocompatible materials 

(MSV and ESTA), may allow for wide ranging applications such as described 

below:   

1.    Treatment of pathological conditions associated with bone marrow [11].  

2.    For non-invasive methods of diagnostic imaging for the evaluation of 

multiple clinical problems for   
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 •     determining the amount of active marrow after X-irradiation and 

chemotherapy 

 •      diagnosis and detection of metastases 

 •      location of the sites for marrow biopsy 

3.    Delivery of agents for the suppression of the inherent function of the bone 

marrow. This can be particularly effective in preventing rejection following 

organ transplantation. Currently used immunosuppressant such as 

Cyclosporin A is associated with significant side effects, particularly 

nephrotoxicity, when used for prolonged periods [12].  

4.    Majority of conventional chemotherapeutic drugs have limitations to the 

dose administered due to their toxicity to the bone marrow. Several 

hematopoietic growth factors such as CSF-1 and GM-CSF, can mediate self-

renewal, proliferation, maturation and activation of marrow cells [13]. This 

class of agents can be delivered to the bone marrow for protection of bone 

marrow and stimulation of its hematopoietic function in conjunction with the 

chemotherapy. 
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4.1 Future work and directions 

 In this study, we provide first evidence of organ specific active targeting 

for delivery of nanoparticles to the BM tissue via E-selectin. This multistage 

system can further be improved by loading nanoparticles that can target specific 

cell type in the bone marrow space. This can be achieved by conjugating the 

nanoparticle with ligands specific to a cell type of interest. Such a two-step active 

targeting concept comprising of organ targeting followed by cell targeting can 

further improve the efficacy and potentially minimize the effect of drugs on 

healthy hematopoietic cells. One example can be the case of breast cancer 

bone metastases where cancer cells metastasizing to the bone marrow cause 

hypercalcemia and their self-stimulation via a “vicious cycle” through maturation 

of osteoclast via activation of cell membrane-associated proteins termed 

receptor activator of NF-$B ligand (RANK/RANKL axis). The mature osteoclasts 

mediate osteolysis (bone resorption) and also secrete growth factors such as 

TGF-# that stimulate tumor growth, leading to pathological hypercalcemia. This 

study can be applied to achieve inhibition of this osteoclastogenic vicious cycle 

by the delivery of therapeutic agents specifically at the metastatic sites in the 

bone marrow without affecting the normal hematopoietic precursor cells. Utilizing 

the two-step sequential targeting; first the MSV targets to the bone marrow 

metastatic niche via E-selectin, then RANK peptide conjugated nanoparticles 

released from MSV in the bone marrow will target osteoclasts. This can 

potentially lead to enhanced local delivery of therapeutics to the osteoclast in the 

bone marrow metastatic niche and reduce bone resorption without affecting 

healthy hematopoietic precursor cells.   
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